Abstract: The serological response of the current 2009 H1N1 pandemic influenza monovalent vaccine in children exhibiting high baseline seropositive rate was evaluated though a community-based household study. Seroprotection rate of >90% and seroconversion rate of >50% were observed in children one month after receiving the pandemic vaccine. Among children with low baseline antibody titer, a significant lower seroconversion rate (55%) was observed in children who received seasonal trivalent inactivated vaccine (TIV) prior to pandemic vaccine, when compared with those receiving the pandemic vaccine only (86%). Persistence of antibody against the pandemic influenza virus was observed 6 months after vaccination in >80% of children presenting seroprotective antibody levels.
Dear Dr. Spier:

We are submitting a manuscript entitled “Serological Response and Persistence in Schoolchildren with High Baseline Seropositive Rate after Receiving 2009 Pandemic Influenza A(H1N1) Vaccine” to be considered for publication in the “Short Communication Articles” section of the Vaccine Journal.

This article presents our findings that: (1) the serological response of the current 2009 H1N1 pandemic influenza monovalent vaccine in children from a community household study exhibits high baseline seropositive rate; (2) a significantly lower seroconversion rate (55%) was observed in the group of children receiving seasonal trivalent inactivated vaccine (TIV) prior to pandemic vaccine, when compared with the group that received the pandemic vaccine only (86%); (3) persistence of immunity against the pandemic influenza virus 6 months after vaccination was observed in >80% of children presenting antibody level with seroprotection. The findings in this study provide important implications for the immunity acquired by children pertaining to the immunization program to be implemented during the coming influenza season of 2010-2011. Hence it is our hope to make these results known as quickly as possible, via publication in the Vaccine journal.

This scientific paper has not been submitted or published elsewhere. Please send all correspondences to Dr. Day-Yu Chao at the following address. Your sincere assistance of this manuscript will be highly appreciated. If you have any question, please feel free to contact us.

Sincerely,

Dr. Day-Yu Chao, Ph.D.

Graduate Institute of Microbiology and Public Health
College of Veterinary Medicine
National Chung-Hsing University
250 Kuo-kuang Rd.
Taichung (402), Taiwan, Republic of China
TEL: 8864-22840694, FAX: 8864-22852186
E-mail: dychao@nchu.edu.tw
Reply to Reviewer’s Comments

The authors are grateful to the reviewer for constructive comments which significantly improved this paper. The questions raised by the reviewer are answered point by point as follows:

Major comments
1. We carefully calculated the mean duration from receiving a pH1N1 vaccination to the collection of post-vaccination sera of the subjects in the two group, no difference was found among the subjects in Group 2 (mean±standard deviation (sd): 24.9±15.3) and in Group 1 (mean±sd: 24.2±12.4). Therefore, the significant lower pH1N1 seroconversion is less likely to come from inadequate time allowed for full antibody response. A note to this effect has been added to the discussion section, page 10, paragraph 2.
2. Recruitment of the children in this study started during September after the school began and the status of the children receiving seasonal TIV or pandemic H1N1 vaccine at the time was unknown. Although the study is not randomized, there was no other factor for determining whether the children were being assigned to group 1 or 2. A note to this effect has been added to the discussion section, page 10, paragraph 2.

Minor comments
1. Comment on abstract has been revised.
2. The definition of seroconversion has been corrected and fully described in section 2.4.
3. The definition of seroprotection has been moved to section 2.4.
4. Should be “strong immune response against pH1N1 in grade 4-6” since 70% of seroconversion was observed instead of 40% observed in grade 1-3 as pointed out by the reviewer. A note has been well-taken and corrected in the text.
5. The clarification was made in section 3.3, as suggested by the reviewer.
6. From the study by Nolan et al (also cited in our reference #25), two important findings are illustrated. First, after single dose of vaccination, only 70% of sero-protection level was reached. However, 80-100% of sero-protection level was achieved after the second dose vaccination. Therefore, although generally two doses are required to induce protective responses in children, the high sero-protection rate after single dose vaccination observed in our study could be due to the previously primed the immune response before the vaccination through infection in the community. The note has been well-taken in the discussion section.
of the manuscript. **Second**, although the immune responses observed are greater than have been generally reported for seasonal inactivated influenza vaccines in seronegative or vaccine-naive infants and children, lower seroresponse was observed in those who had been previous vaccinated against seasonal influenza. This is consistent with the observation in our study as pointed out by the reviewer and has been noted in the discussion section.

7. The paragraph has been revised as suggested by the reviewer, noting that without virological confirmation, it only raises the question of whether asymptomatic infections might play a role in spread of influenza.

8. The paragraph mentioning about the previous studies in the elderly has been deleted to focus more in children as suggested by the reviewer.

9. Since GEE estimates were not available when these dichotomous outcomes showed only one level (all ‘yes’ or all ‘no’), the 95% confidence intervals have been recalculated by using Wilson score method for proportion when the value of a rate is 100%.
ABSTRACT

The serological response of the current 2009 H1N1 pandemic influenza monovalent vaccine in children exhibiting high baseline seropositive rate was evaluated though a community-based household study. Seroprotection rate of >90% and seroconversion rate of >50% were observed in children one month after receiving the pandemic vaccine. Among children with low baseline antibody titer, a significant lower seroconversion rate (55%) was observed in children who received seasonal trivalent inactivated vaccine (TIV) prior to pandemic vaccine, when compared with those receiving the pandemic vaccine only (86%). Persistence of antibody against the pandemic influenza virus was observed 6 months after vaccination in >80% of children presenting seroprotective antibody levels.
Serological Response and Persistence in Schoolchildren with High Baseline Seropositive Rate after Receiving 2009 Pandemic Influenza A(H1N1) Vaccine

Day-Yu Chao1##, Kuang-Fu Cheng2#, Ying-Hen Hsieh3, Tsai-Chung Li2,3, Trong-Neng Wu3,4, Chiu-Ying Chen4, Chen-An Tsai2,3, Jin-Hwa Chen2,3, Hsien-Tsai Chiu2,4, Jang-Jih Lu5,6, Mei-Chi Su6, Yu-Hsin Liao1, and CIDER7

1Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan (401)
2Biostatistics Center, 3 Department of Public Health, 4 Graduate Institute of Biostatistics, 5Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
6Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
7Center for Infectious Disease Education and Research, China Medical University, Taichung, Taiwan

These authors contributed equally to this work as first authors.

*Corresponding author: Dr. Day-Yu Chao,

Institute of veterinary public health, School of veterinary medicine
National Chung-Hsing University
Taichung, Taiwan (401)
TEL:886-4-22840694
FAX:886-4-22852186
EMAIL: dychao@nchu.edu.tw
ABSTRACT

The serological response of the current 2009 H1N1 pandemic influenza monovalent vaccine in children exhibiting high baseline seropositive rate was evaluated though a community-based household study. Seroprotection rate of >90% and seroconversion rate of >50% were observed in children one month after receiving the pandemic vaccine. Among children with low baseline antibody titer, a significant lower seroconversion rate (55%) was observed in children who received seasonal trivalent inactivated vaccine (TIV) prior to pandemic vaccine, when compared with those receiving the pandemic vaccine only (86%). Persistence of antibody against the pandemic influenza virus was observed 6 months after vaccination in >80% of children presenting seroprotective antibody levels.

Keywords: pandemic influenza; 2009 pH1N1; vaccine; serology; immune response; schoolchildren

Running headline: Serological response after 2009 p H1N1 vaccination
1. Introduction

In April 2009, a novel influenza A (H1N1) virus that is similar to the influenza viruses previously identified in swine was determined to be the cause of an influenza respiratory illness that spread across North America and was declared a worldwide pandemic by World Health Organization (WHO) in June [1-3]. The 2009 pandemic influenza A (pH1N1) virus contains a novel constellation of gene segments, which most likely stemmed from triple re-assortment of two or more viruses of swine, human, and avian origins [4]. Previous serosurveys have demonstrated little or no cross-protection of the pediatric sera to the pH1N1 virus, which leaves the young children susceptible to infection [5]. For the coming influenza season of 2010-2011 in the post-pandemic period, a safe and effective pH1N1 vaccine for children is urgently needed.

The effectiveness of influenza vaccination in children, in reducing infections and transmission among household members and the community, has been well documented [6-9]. Several modeling analyses indicate that targeted mass immunization of children will contribute to the optimal control and prevention of pandemic and seasonal influenza [10-12]. During the past influenza season of 2009-2010, many governments and vaccine makers began to produce vaccines against the pH1N1 virus in massive quantity. The results from clinical trials reported in US, Europe, China, and Taiwan suggested that a good immunogenicity was generated after one or two doses of vaccine was administered [13-20]. However, the evaluation of antibody response after vaccination in community settings with high baseline seropositivity rate is still lacking.

Moreover, in light of the inadequate cross-protection from either seasonal H1N1 (sH1N1) or pH1N1, the Advisory Committee on Immunization Practice (ACIP) from United States Centers for Disease Control and Prevention (US-CDC) recommended the simultaneous usage of the trivalent influenza vaccine (TIV) for increased protection against the circulating seasonal influenza viruses [21]. Different policies on how TIV was administered in combination with the pH1N1 monovalent vaccine were adopted by different countries. The vaccination policy implemented in Taiwan was to
administere pH1N1 monovalent vaccine one month after the TIV vaccination in schoolchildren.

During the last winter influenza season in 2009-2010, we carried out a community-based sero-epidemiological study in central Taiwan to evaluate the antibody response after the pH1N1 vaccination in school children with or without prior receiving TIV immunization. Also, the immune status was followed 6 months after the vaccination to ascertain the decline of the antibody in order to provide the baseline immunity for the immunization program to be implemented during the coming influenza season of 2010-2011.

2. Materials and methods

2.1. Study design and subjects

A sero-epidemiologic study was conducted by the Center for Infectious Disease Education and Research (CIDER) influenza research group in China Medical University (CMU) which was designed to investigate household transmission and vaccine efficacy. The subjects from households with schoolchildren in central Taiwan were recruited and their serum samples were taken by trained nurses during three sampling periods: pre-season (baseline, September, 2009~November, 2009), post-vaccination (sampling for schoolchildren only, December, 2009~February, 2010), and post-season (March, 2010~July, 2010). The demographic characteristics, family contact patterns, and adverse effects after seasonal and pandemic vaccinations were obtained through questionnaires during three household visits. Written informed consent form approved by the CMU Hospital Institutional Review Board (DMR96-IRB-216) was signed by each subject or their parent/guardian.

To evaluate the immune response after pandemic vaccination, 225 subjects with paired serum samples (baseline and post-vaccination) were selected initially. Subjects eligible for data analysis were screened with the following exclusion criteria: (1) age more than 14 years old; (2) incomplete pandemic or seasonal vaccination records; (3) received seasonal vaccine 2 weeks or more before baseline sampling; (4) received the second dose of pandemic vaccine 2 weeks or more before post-vaccination sampling. Finally, data of 193 eligible subjects (from 162 households) of age 5-13
was analyzed (Figure 1). Among these children, 131 received pandemic vaccine only (denoted by group 1) and 62 received both pandemic and seasonal vaccines (denoted by group 2). Each vaccination group was further divided by age/grade into grade 1-3 and grade 4-6. The basic demographic data of the 193 subjects, including age, gender, and grades of the school from both groups, was described in Table 1.

2.2. Vaccine

The 2009 pH1N1 virus vaccine (AdimFluS, A/H1N1) used in this study was produced by Adimmune (Taichung, Taiwan) in embryonated chicken eggs using standard techniques for the production of seasonal inactivated influenza vaccines. It is a monovalent, unadjuvanted, inactivated, thimerosal-preserved, split-virus vaccine. The seed virus was supplied by the US-CDC and prepared from the reassortant vaccine virus NYMC-179A derived from the A/California/7/2009 (H1N1) virus. The vaccine contained 30 ug of hemagglutinin (HA) per milliliter.

2.3. Assessment of safety

A questionnaire pertaining to seasonal and/or pandemic vaccination and the corresponding adverse effects within 2 weeks after vaccination was completed by the subject or the guardian. The adverse effects, including redness, swelling or soreness at injection site, dizziness, hoarseness, sore throat, cough, fever (≥38℃), or any other influenza-like symptoms, were retrospectively evaluated during the month after seasonal and pandemic vaccination were administered.

2.4. Laboratory assays

Antibody titers were measured by a hemagglutination inhibition (HI) assay following the standard protocol by the WHO [22]. The 2009 pH1N1 virus (AdimFluS, A/H1N1) vaccine strain was used to evaluate the immune response after the monovalent pH1N1 vaccine vaccination. The wild-type virus strain used was originally isolated from patient infected by S-OIV H1N1, which is antigenically and genetically closely related to A/California/07/2009. To evaluate the antibody response against TIV, the vaccine strains selected for 2009-2010 northern hemisphere winter season
of H1N1 (A/Brisbane/59/2007), H3N2 (A/Brisbane/10/2007) and B (B/Brisbane/60/2008) were also used. All viruses used in this study were cultured from Madin-Darby canine kidney (MDCK) cells and centrifuged at 1,600 rpm, 4°C to remove cell debris. For the HI assay, serum samples were pre-treated with receptor destroying enzyme and titrated in two-fold dilutions in phosphate-buffered saline (PBS) with an initial dilution of 1:10 and a final dilution of 1:1024. Titers were expressed as the reciprocal of the highest dilution of serum where hemagglutination was prevented. Samples that were negative by HI were assigned a titer of 1:5 for computational purposes in obtaining a four-fold increase of HI titers. Seroconversion was defined as either a pre-vaccination titer of <1:10 together with a post-vaccination titer of ≥1:40, or a significant increase in HI titer by a factor of 4 or greater. Seroprotection was defined as HI titer of 1:40 or more.

2.5. Statistical analysis

The immunogenicity outcomes, including seroconversion rate, seroprotection rate, and geometric mean titer (GMT) ratio, were evaluated based on HI titers. HI titer below the detection limit (1:10) was assigned a titer of 1:5 in order to compute the GMT. The GMT ratio was calculated by dividing the post-vaccination GMT by the baseline GMT.

The point estimates and 95% confidence intervals (CI) of the immunogenicity outcomes were calculated using generalized estimating equations (GEE) to account for household correlation. The comparisons were made between the vaccination group (group 1 vs. group 2), age/grade group (grade 1-3 vs. grade 4-6), and baseline HI titer (<40 vs. ≥40). A p-value of less than 0.05 represented statistically significance. All statistical analyses were performed using SAS statistical software version 9.2 (SAS Institute, Cary, NC).

3. Results

3.1. Immunogenicity to the monovalent pH1N1 vaccine

Prior to the vaccination, more children (86%) in grade 1-3 had high HI antibody titers of 1:40 or more against pandemic vaccine strain than those in grade 4-6 (55.6%) among Group 1 (Table 1),
but less so among children in Group 2 for grade 1-3 (71.4%) as compared to grade 4-6 (64.7%). No significant difference in HI antibody titer against seasonal H1N1 or H3N2 vaccine strains was found between age/grade groups prior to vaccination. After vaccination, seroprotective response (HI titer ≥ 40) was observed in 96.0% and 96.4% in schoolchildren of grade 1-3 from Group 1 and 2, respectively. Similarly, the seroprotective response was observed in 92.6% and 85.3% of children of grade 4-6 among Group 1 and 2 (Table 2), respectively.

In addition to the proportion of study subjects having HAI titers higher than 1:40, we also compute the seroconversion rates. Age-related differences were found among subjects receiving the monovalent pH1N1 vaccine, with statistically significantly higher (p<0.05) seroconversion rates (70.4%; 95% CI, 59.3%-79.4%) in subjects who were in grade 4-6 than those in grade 1-3 (38%; 95% CI, 25.8%-51.9%) in Group 1. Meanwhile, having received TIV prior to pH1N1 vaccination increased the seroconversion rate in grade 1-3 up to 57.1% (95% CI, 38.7%-73.8%) when compared with the seroconversion rate of 38% for children with monovalent pH1N1 vaccination only in Group 1 (Table 2).

Consistent with the age-related seroconversion rate after vaccination, the increase in GMT ratio among subjects of grade 4-6 in Group 1 was 6.3-fold, which was significantly higher than 2.3-fold among those in grade 1-3 in Group 2. Extra dose of TIV resulted in 3.4-fold and 3.9-fold increase in GMT ratio among children of grade 1-3 and 4-6 in Group 2, respectively. However, no statistical significance in fold increase of GMT ratio was observed between Group 1 and Group 2. Fig. 2 illustrates that the reverse cumulative percentage of subjects having different levels of HAI titers against the 2009 pH1N1 virus before and after vaccinations in the different study groups. Again, a single vaccination results in strong antibody responses to pH1N1 vaccine strain in the grade 4-6 group.

3.2. Immunogenicity to the TIV vaccine

In Group 2, TIV vaccination prior to receiving the pandemic vaccine induced strong immune
response not only against the A/california/2009 H1N1-like NYMC-179A antigen, but also against seasonal influenza A/H1N1, A/H3N2, and B antigens in both age groups. The seroconversion rate of seasonal influenza A/H1N1 and A/H3N2 was slightly lower in children of grade 4-6 (38.2% and 26.5%, respectively) than in grade 1-3 (53.6% and 39.3%, respectively). Similarly, the GMT ratio was also lower in grade 4-6 than in grade 1-3. However, subjects from both age/grade groups in Group 2 attained nearly 100% seroprotection rate against both seasonal influenza A/H1N1 and B/H3N2 vaccine strains post-vaccination (Table 2).

Interestingly, receiving pandemic vaccine alone also induced comparable immune response against seasonal influenza A/H1N1 and A/H3N2 antigens in Group 1. The seroconversion rate of seasonal influenza A/H3N2 was slightly lower in the children of grade 4-6 (28.4%) than in grade 1-3 (40.0%) but it was about equivalent (50%) to seasonal influenza A/H1N1 for both grades. Although a slightly lower GMT ratio were observed in grade 4-6 (1.6-fold) than in grade 1-3 (2.1-fold), nearly 100% seroprotection rate was also achieved in both age groups post vaccination as shown in Group 1 (Table 2).

3.3 Baseline titer of pH1N1 vaccine strain and immunogenicity

Among children of grade 4-6 with baseline HI titer <40, the seroconversion rate was higher in Group 1 (88.9%; 95% CI, 74.3%-95.7%) than that in Group 2 (50.0%; 95% CI, 24.4%-75.6%) with statistical significance (p<0.05) (Table 3). The seroconversion rate was also higher in children with baseline HI titer <40 in Group 1 (86.0%; 95% CI, 72.5%-93.5%) than in Group 2 (55.0%; 95% CI, 33.6%-74.7%) with statistically significance (p<0.05). Furthermore, the subjects in Group 1 with higher baseline titer (HI≥1:40) showed lower seroconversion rate of 32.6% and 55.6% for children in grade 1-3 and 4-6, respectively, when compared with the subjects from the same group with lower baseline titer (HI<1:40) where the seroconversion rates were 71.4% and 88.9% for children in grade 1-3 and 4-6, respectively.

3.4. Side effects after vaccination
There were in total 17 events of adverse effects reported by the children in our study after receiving the vaccines. Among the symptoms reported, fever (3.6%) and any other influenza-like symptom (4.7%) were the most common adverse events. In particular, fever was observed more frequently in children of grade 1-3 (10%) than in children of grade 4-6 (1.2%) after the monovalent pH1N1 vaccination in Group 1 (p=0.049) (Table 4).

3.5 Persistence of the immunity

The children were followed for more than 6 months after the vaccination and a significant high proportion of the children retained a HI titer of 1:40 or higher, which confers protection from infection by the novel 2009 influenza virus (pH1N1). 94.4% of the children in grade 1-3 and 92.6% of the grade 4-6 children in Group 1 have HI antibody levels that confer seroprotection. Similarly, 100% of the children in grade 1-3 and 82.4% of the grade 4-6 children in Group 2 had HI antibody level conferring seroprotection.

4. Discussion

This community-based study was conducted with children who might have been previously infected by pH1N1 influenza virus and approximately 65% of them had HI antibody of 1:40 or higher before vaccination, which distinguishes our study from other clinical trial studies with subjects having low pre-vaccination antibody titer and hence the resulting immune response might be different. To our best knowledge, the pandemic vaccine immunogenicity has never been evaluated on a community-based population. Our results are consistent with the results of previous studies that Adimmune 2009 monovalent pH1N1 influenza vaccine is immunogenic and safe in children [19, 23], and the present pandemic influenza vaccine after only one dose induces immune responses that meet all international licensing criteria applicable for the children with high baseline antibody titer [14, 24].

The immune response observed after a single pandemic monovalent pH1N1 vaccination in this study showed high seroprotection rates of 96% and 92.6% of among children of grade 1-3 and 4-6,
respectively, which is different from the immune response exhibited in previous studies of seasonal
H1 or novel H5N1 strain in vaccine-naïve children [17, 25], as well as in previous vaccination
studies of children with low pre-vaccination antibody titers in which two doses are required to
induce protective responses in children aged under 9 [19, 20]. A possible reason for this apparently
high immunogenic response of the current vaccine could be that a high proportion of children in the
community had been previously exposed to this novel pH1N1 virus, which primed the immune
response before the vaccination.

Our study found that there is a diminution of antibody response in those with higher baseline
antibody titer and having receiving TIV vaccination one month before. This result differs from the
results of a previous study where TIV and pH1N1 monovalent vaccine were administered
simultaneously [13]. No immune interference was observed as the immune response, measured by
the GMT ratio, seroconversion rate, and seropositivity rate, was at similar levels in groups either
receiving pandemic vaccine only or co-administered pandemic and seasonal vaccine. The mean
durations between receiving a pH1N1 vaccination to the collection of post-vaccination sera of the
subjects in the two groups were calculated, no difference was found among the subjects in Group 2
(mean±standard deviation (sd): 24.9±15.3) and in Group 1 (mean±sd: 24.2±12.4). Therefore, the
significant lower pH1N1 seroconversion is less likely to come from inadequate time allowed for full
antibody response. Also, the recruitment of children into this study started during September after
the school began and the status of the children receiving seasonal TIV or pandemic H1N1 vaccine
was unknown. Although the study is not randomized, there was no other factor for determining
whether the children were being assigned to group 1 or 2. Similar result was also observed in other
studies [17], and it is intuitively plausible that immune interference was in effect while two similar
vaccines were administered within one month.

Our findings pertaining to antibody response against seasonal H1N1 and H3N2 vaccine strains
in the group of children receiving only pandemic H1N1 monovalent vaccine was surprising.
Respective seroconversion rates of 50.4% and 32.8% to seasonal H1N1 and H3N2 vaccine strains suggest that the wild-type influenza virus, especially H3N2, might have co-circulated in the community, as co-circulation of the 2009 pandemic and seasonal strains had also been reported elsewhere [26]. Without virological confirmation, our results on the seroconversion rate of H3N2 vaccine strain observed in children not receiving TIV and had few clinical symptoms raise the question that children might acquire an asymptomatic or subclinical infection and perhaps play a significant role as the major disseminators in the spread of influenza [27, 28]. These findings support the belief that intervention strategy targeting schoolchildren could be more efficacious [10].

Finally, persistence of immunity was also evaluated. During the follow-up of the children in the study 6 months after vaccination, a significantly high proportion of the children retained a HI titer of 1:40 or higher against pH1N1 virus. The serum protection rate of higher than 90% in children should provide sufficient herd immunity for this coming influenza season of 2010-2011. Mass influenza immunization program, such as the one implemented in Taiwan since 2007 targeting schoolchildren of age 9 or under, offers repeated immunization which could enhance the antibody titer, preventing infection in the children as well as reducing morbidity and mortality in the elderly, as previous studies have suggested [7, 8].

Acknowledgements

This study was supported by National Science Council of Taiwan and China Medical University. We declare that we have no conflict of interest.

References

Figure Legends

Figure 1. Enrollment chart of the study subjects

Figure 2. Reverse cumulative distribution curves of the hemagglutination inhibition (HI) antibody titers against different strains, according to vaccination group and age/grade group
Table 1. Demographic characteristics of the subjects

<table>
<thead>
<tr>
<th></th>
<th>Group1: Pandemic Vaccination only (N=131)</th>
<th>Group2: Pandemic and Seasonal Vaccination (N=62)</th>
<th>All (N=193)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age - yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>10.39 ± 1.82</td>
<td>10.27 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>Median (Q1-Q3)</td>
<td>11 (9-12)</td>
<td>10 (9-12)</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>5-13</td>
<td>5-13</td>
</tr>
<tr>
<td>Gender - no.(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>58 (44.27)</td>
<td>27 (43.55)</td>
<td>85 (44.04)</td>
</tr>
<tr>
<td>Female</td>
<td>73 (55.73)</td>
<td>35 (56.45)</td>
<td>108 (55.96)</td>
</tr>
<tr>
<td>Grade - no.(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>50 (38.17)</td>
<td>28 (45.16)</td>
<td>78 (40.41)</td>
</tr>
<tr>
<td>4-6</td>
<td>81 (61.83)</td>
<td>34 (54.84)</td>
<td>115 (59.59)</td>
</tr>
<tr>
<td>Pre-vaccination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH1N1 vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAI<1:10</td>
<td>Grade 1-3</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>7 (8.6)</td>
<td>8 (7.0)</td>
</tr>
<tr>
<td>HAI≥1:40</td>
<td>Grade 1-3</td>
<td>43 (86.0)*</td>
<td>63 (80.8)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>45 (55.6)*</td>
<td>67 (58.3)</td>
</tr>
<tr>
<td>Seasonal H1N1 vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAI<1:10</td>
<td>Grade 1-3</td>
<td>1 (2.0)</td>
<td>4 (5.1)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>5 (6.2)</td>
<td>7 (6.1)</td>
</tr>
<tr>
<td>HAI≥1:40</td>
<td>Grade 1-3</td>
<td>44 (88.0)</td>
<td>65 (83.3)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>68 (84.0)</td>
<td>97 (84.4)</td>
</tr>
<tr>
<td>Seasonal H3N2 vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAI<1:10</td>
<td>Grade 1-3</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>HAI≥1:40</td>
<td>Grade 1-3</td>
<td>50 (100.0)</td>
<td>78 (100.0)</td>
</tr>
<tr>
<td></td>
<td>Grade 4-6</td>
<td>78 (96.3)</td>
<td>111 (96.5)</td>
</tr>
<tr>
<td>Table 2. Immune responses after the 2009 pandemic Influenza A H1N1 vaccination in group1 (pandemic vaccine only) and group 2 (pandemic and seasonal vaccine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 1: Pandemic Vaccination only</td>
<td>Group 2: Pandemic and Seasonal Vaccination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GMT (95%CI) baseline</td>
<td>GMT ratio (95%CI)</td>
<td>Seroprotection rate (95%CI)</td>
</tr>
<tr>
<td>Pandemic H1N1- vaccine strain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1-3</td>
<td>47.9 (40.4-56.9)*</td>
<td>2.3 (1.6-3.3)**</td>
<td>96.0 (85.3-99.0)</td>
</tr>
<tr>
<td>Grade 4-6</td>
<td>30.4 (24.7-37.5)*</td>
<td>6.3 (4.5-9.0)**</td>
<td>92.6 (84.5-96.6)</td>
</tr>
<tr>
<td>Total</td>
<td>36.2 (31.1-42.1)</td>
<td>4.3 (3.3-5.7)</td>
<td>93.9 (88.2-96.9)</td>
</tr>
<tr>
<td>Seasonal H1N1- vaccine strain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1-3</td>
<td>102.7 (76.7-137.4)</td>
<td>3.6 (2.6-5.0)</td>
<td>100 (92.9-100)a</td>
</tr>
<tr>
<td>Grade 4-6</td>
<td>95.7 (71.8-127.7)</td>
<td>3.3 (2.5-4.4)</td>
<td>97.5 (90.6-99.4)</td>
</tr>
<tr>
<td>Total</td>
<td>98.3 (79.3-121.9)</td>
<td>3.4 (2.7-4.2)</td>
<td>98.5 (94.1-99.6)</td>
</tr>
<tr>
<td>Seasonal H3N2- vaccine strain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1-3</td>
<td>249.3 (197.8-314.3)</td>
<td>2.1 (1.6-2.8)</td>
<td>100 (92.9-100)a</td>
</tr>
<tr>
<td>Grade 4-6</td>
<td>161.4 (125.9-206.9)</td>
<td>1.6 (1.3-2.1)</td>
<td>100 (95.5-100)a</td>
</tr>
<tr>
<td>Total</td>
<td>190.5 (158.4-229.1)</td>
<td>1.8 (1.5-2.2)</td>
<td>100 (97.2-100)a</td>
</tr>
</tbody>
</table>

*denoting p<0.01 of significant difference between Grade 1-3 and Grade 4-6 among Group 1 using the GEE approach
**denoting p<0.001 of significant difference between Grade 1-3 and Grade 4-6 among Group 1 using the GEE approach

* The 95% confidence intervals were calculated using Wilson score method for proportion when the value of rate is 100%
Table 3. Seroconversion rate among those with baseline HI titer <40 and baseline HI titer ≥40

<table>
<thead>
<tr>
<th>Seroconversion rate (95% CI)</th>
<th>Baseline HI <40</th>
<th>Baseline HI ≥40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group1: Pandemic Vaccination only</td>
<td>Group2: Pandemic and Seasonal Vaccination</td>
</tr>
<tr>
<td>Pandemic H1N1- vaccine strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1-3</td>
<td>71.4 (32.7-92.8)</td>
<td>62.5 (28.5-87.5)</td>
</tr>
<tr>
<td>Grade 4-6</td>
<td>88.9 (74.3-95.7)†‡</td>
<td>50.0 (24.4-75.6)†</td>
</tr>
<tr>
<td>Total</td>
<td>86.0 (72.5-93.5)¶§</td>
<td>55.0 (33.6-74.7)¶</td>
</tr>
</tbody>
</table>

* denoting p<0.05 for significant difference between Grade 1-3 and Grade 4-6 among Group1 with baseline HI titer ≥40 using the GEE approach
† denoting p<0.01 for significant difference between Group1 and Group 2 among all subjects with baseline HI titer <40 using the GEE approach
‡ denoting p<0.01 for significant difference between Group1 and Group 2 among Grade 4-6 with baseline HI titer <40 using the GEE approach
¶ denoting p<0.01 for significant difference between all subjects with baseline HI titer <40 and baseline HI titer ≥40 within Group1 using the GEE approach
§ denoting p<0.0001 for significant difference between Grade 4-6 with baseline HI titer <40 and baseline HI titer ≥40 within Group1 using the GEE approach

\[\text{Grade 1-3} \quad \text{Grade 4-6} \quad \text{Total} \]
Table 4. Adverse effects after the 2009 pandemic Influenza A H1N1 vaccination, according to vaccination group and age/grade group

<table>
<thead>
<tr>
<th>Adverse Effects - no.(%)</th>
<th>Group 1: Pandemic Vaccination only</th>
<th>Group 2: Pandemic and Seasonal Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1-3 (N=50)</td>
<td>Grade 4-6 (N=81)</td>
</tr>
<tr>
<td>Any symptom</td>
<td>7 (14.0)</td>
<td>6 (7.4)</td>
</tr>
<tr>
<td>Redness, swelling or soreness at injection site</td>
<td>0 (0.0)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>0 (0.0)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Hoarseness</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Sore throat</td>
<td>3 (6.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Cough</td>
<td>3 (6.0)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Fever (≧38°C)</td>
<td>5 (10.0)*</td>
<td>1 (1.2)*</td>
</tr>
<tr>
<td>Other symptom</td>
<td>5 (10.0)</td>
<td>3 (3.7)</td>
</tr>
</tbody>
</table>

Notation denoting significant difference between Grade 1-3 and Grade 4-6 among Group1 using the GEE approach: *p<0.05
225 Subjects with paired serum samples: baseline, post-vaccination

Exclusion
- 2 subjects aged >14
- 7 subjects with incomplete vaccination records

216 Subjects with paired serum samples
Aged 5 to 13, complete vaccination records

Exclusion
- 12 subjects did not receive pandemic H1N1 vaccine

204 subjects received 1st dose of pandemic H1N1 vaccine

Group 1: Pandemic Vaccination only
135 subjects received only pandemic H1N1 vaccine

131 were analyzed
Exclusion
- 4 subjects vaccinated with the second dose of pandemic vaccine before 2nd sampling (>14 day) were excluded

Group 2: Pandemic and Seasonal Vaccination
69 subjects received both pandemic H1N1 and seasonal influenza vaccine (about 1 month before pandemic vaccination)

62 were analyzed
Exclusion
- 1 subject vaccinated with seasonal vaccine before 1st sampling (>14 day)
- 6 subjects vaccinated with the second dose of pandemic vaccine before 2nd sampling (>14 day)

Figure 1. Enrollment chart of the study subjects
Figure 2. Reverse cumulative distribution curves of the hemagglutination inhibition (HI) antibody titers against different strains, according to vaccination group and age/grade.