Please use this identifier to cite or link to this item:
標題: 低介電及高可靠度薄膜材料應用於內連導線之研究
Studies on the Low-k Dielectric and High Reliability Thin Film Materials for Interconnects
作者: 魏伯州
Wei, Bor-Jou
關鍵字: High-density-plasma chemical vapor deposition (HDP-CVD)
高密度電漿化學氣相沉積 (HDP-CVD)
Fluorinat-ed-silicate-glass (FSG)
Plasma enhanced chemical vapor deposition (PE-CVD)
Di-ethoxymethylsiliane (DEMS)
Trimethylsilane (3MS)
Thin film resistor.
電漿輔助化學氣相沉積 (PE-CVD)
二乙氧基甲基矽烷 (DEMS)
三甲基矽甲烷 (3MS)
Thin 薄膜電阻器。
出版社: 材料科學與工程學系所
引用: [1] T. L. Alford, J. Li, J. W. Mayer, and S. Q. Wang, “Copper-based metallization and interconnects for ultra-large-scale integration applications”, Thin Solid Films, 262, p. vii-viii (1995). [2] M. Moussavi, “Recent Progress on Advanced Interconnects”, Proceedings of 30th European Solid State Device Research Conference, p. 68-71 (2000). [3] M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. S. Ho,“Low dielectric constant materials for ULSI interconnects”, Annual Review of Materials Science, 30, p. 645-680 (2000). [4] X.W. Liu, J.H. Lin, W.J. Jong, and H.C. Shih, “The effect of pressure control on a thermally stable a-C:N thin film with low dielectric constant by electron cyclotron resonance-plasma”, Thin Solid Films, 409, p. 178-184 (2002). [5] S.H. Lai, Y.L. Chen, L.H. Chan, Y.M. Pan, X.W. Liu, and H. C. Shih, “The crys-talline properties of carbon nitride nanotubes synthesized by electron cyclotron resonance plasma”, Thin Solid Films, 444, p. 38-43 (2003). [6] X.W. Liu, J.H. Lin, C.H. Tseng, and H. C. Shih, “Optical and structural properties of the amorphous carbon nitride by ECR-plasma”, Mater. Chem. Phys., 72, p.258-263 (2001). [7] X.W. Liu, C.H. Tseng, J.H. Lin, L.T. Chao, and H. C. Shih, “Optical properties of amorphous carbon nitride synthesized on Si by ECR-CVD”, Surf. Coat. Technol., 135, p. 184-187 (2001). [8] W.J. Hsieh, C.H. Wang, S.H. Lai, J.W. Wong, H. C. Shih, and T.S. Huang, “Ca-thodoluminescence of fluorine doped amorphous carbon nanoparticles deposited by a filtered cathodic arc plasma system”, Carbon, 44, p. 107-112 (2006). [9] W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, and H. C. Shih, “Cathodolumines-cence and electron field emission of boron-doped a-C : N films”, Carbon, 43, p. 820-826 (2005). [10] S.H. Lai, K.L. Chang, H. C. Shih, K.P. Huang, and P. Lin, “Electron field emis-sion from various morphologies of fluorinated amorphous carbon nanostructures”, Appl. Phys. Lett., 85, p. 6248-6250 (2004). [11] S.H. Lai, K.P. Huang, Y.M. Pan, Y.L. Chen, L.H. Chan, P. Lin, and H. C. Shih, “Electron field emission from fluorinated amorphous carbon nanoparticles on po-rous alumina”, Chem. Phys. Lett., 382, p. 567-572 (2003). [12] X.W. Liu, L.H. Chan, W.J. Hsieh, J.H. Lin, and H. C. Shih, “The effect of argon on the electron field emission properties of alpha-C : N thin films”, Carbon, 41, p. 1143-1148 (2003). [13] X.W. Liu, C.H. Lin, L.T. Chao, and H. C. Shih, “Electron field emission from amorphous carbon nitride nanotips”, Mater. Lett., 44, p. 304-308 (2000). [14] X.W. Liu, S.H. Tsai, L.H. Lee, M.X. Yang, A.C.M. Yang, I.N. Lin, and H. C. Shih, “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma”, J. Vac. Sci. Technol. B, 18, p. 1840-1846 (2000). [15] N. Hayasaka, H. Miyajima, Y. Nakasaki, and R. Katsumata, “Fluorine doped SiOF for low dielectric constant films in sub-half micron ULSI multilevel inter-connection”, Proc. Int. Conf. Solid State Device and Materials, p. 157-159 (1995). [16] S. Sugahara, K. I Usami, and M. Matsumura, “A Proposed Organic-Silica Film for Inter-Metal-Dielectric Application”, Jpn. J. Appl. Phys., 38, p. 1428-1432 (1999). [17] J. Gambino, A. Stamper, T. Mcdevitt, V. McGahay, S. Luce, T. Pricer, B. Porth, C. Senowitz, R. Kontra, M. Gibson, H. Wildman, A.Piper, C. Benson,T.Standaert, P. Biolsi,E. Cooney, E. Webster, R. Wistrom, A. Winslow, and E. White, “Integration of Copper with Low-k Dielectrics for 0.13μm Technology”, Proceedings of 9th IPFA Conference, p. 111-117 (2002). [18] B. Narayanan, R. Kumar, and P. D. Foo, “Linearly varying surface-implanted n− layer used for improving trade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor”, Microelectronic Journal, 33, p. 971-974 (2002). [19] V. McGayay, A. Acovic, B. Argarwala, G. Endicott, M. Shapiro, and S. Yankee, “Process integration and reliability of hydrogen silsesquioxane in direct-on-metal application ”, Int. VLSI Multilevel Interconnection Conf. Proc., p. 116 (1996). [20] M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H Thin Films Deposited from Hydrogen Silsesquioxane Resins”, J. Electrochem. Soc., 145, p. 2861-2866 (1998). [21] J. Tao, N. W. Cheung, and C. Hu, “Characterization and modeling of electromi-gration failures in multilayered interconnects and barrier layer materials”, IEEE Trans. Electron Devices, 43, p. 1819-1825 (1996). [22] M. Rocke and M. Schneegans, “Titanium nitride for antireflection control and hillock suppression on aluminum silicon metallization”, J. Vac. Sci. Technol., B6, p. 1113-1115 (1988). [23] D. S. Gardner, T. L. Michalka, K. C. Saraswat, T. W. Barhee, J. P. McVittie, and J. D. Meindl, “Layered and homogeneous films of aluminumlsilicon with titanium and tungsten for multilevel interconnects”, IEEE Trans. Electron Devices, ED-32, p.174-183 (1985). [24] T. Lee, K. Watson, F. Chen, J. Gill, D. Harmon, T. Sulllivan, and B. Li, “Charac-terization and reliability of TaN thin film resistors”, in proceedings of IEEE 42nd Annual Inter. Relia. Physics Symposium, p. 502-508 (2004). [25] A. Malmros, M. Sudow, K. Andersson, and N. Rorsman , “Characterization and reliability of TaN thin film resistors”, J. Vac. Sci. Technol. B, 28, p. 912-915 (2010). [26] Y. Li, D. Donnet, A. Grzegorczyk, J. Cavelaars, and F. Kuper, “Assessing the degradation mechanisms and current limitation design rules of SiCr-based thin-film resistors in integrated circuits”, in IEEE International Reliability Physics Symposium(IRPS), p.724-730 (2010). [27] G. I. Drandova and K. D. Decker, “TaN Resistor Reliability Studies”, in pro-ceedings of CS Mantech Conference, p. 69-72 (2010). [28] R. Brynsvold and K. Manning, “Constant-current stressing of SiCr-based thin film resistors: Initial “wearout” investigation”, IIRW FINAL REPORT, p.37-43 (2006). [29] F. Downey, “IMD stack thermal resistance effects on SiCr thin film resistor's current density performance”, IIRW FINAL REPORT, p. 148-150 (2009). [30] M. Moussavi, “Advanced interconnect scheme towards 0.1 um”, IEDM, p. 611-614 (1999). [31] S. H. Liu, E. Tolentino, Y. Lim, and A. Koo, “Advanced metrology for rapid characterization of the thermal mechanical properties of low-k dielectric and cop-per thin films”, J. Electro. Mater., 30, p. 299-303 (2001). [32] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, “A high reliability metal insulator metal capaci-tor for 0.18μm copper technology”, IEDM, p157-160 (2000). [33] M. Vogt, M. Kachel, M. Plotner, and K. Drescher, “Dielectric barriers for Cu metallization systems”, Microelectronic Engineering, 37-38, p. 181-187 (1997). [34] M. Fayolle, G. Passemard, M. Assous, D. Louis, A. Beverina, Y. Gobil, J. Clu-zel, and L. Arnaud, “Integration of copper with an organic low-k dielectric in 0.12-μm node interconnect”, Microelectronic Engineering, 60, p. 119-124 (2002). [35] G. Passemard, O. Demolliens, C. H. Lecornec, P. Noel, J. C. Maisonobe, P. Motte, J. Palleau, F. Pires, L. Ravel, J. Torres, and F. Vinet, “Single damascene integration of BCB with copper”, VLSI Multilevel Interconnection Conference (VMIC), p. 63-68 (1998). [36] B. Y. Tsui, K. L. Fang, and S. E. Lee, “Electrical instability of low-dielectric constant diffusion barrier film (a-SiC:H) for copper interconnect”, IEEE Transac-tions on Electron Devices, 48, p. 2375-2383 (2001). [37] J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micro CMOS”, Proc. Symp. VLSI Technol. Dig., p. 59-60 (1994). [38] M. H. Jo, H. and H. Park, “Leakage current and dielectric breakdown behavior in annealed SiO2 aerogel films”, Appl. Phys. Lett., 72, p. 1391-1393 (1998). [39] J. Torres, “Cu dual damascene for advanced metallisation (0.18 μm and be-yond)”, Proc. IITC conference, p. 253-255 (1999). [40] D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper intercon-nects with polymer ILDs”, Thin Solid Films, 308-309, p. 523-528 (1997). [41] J. Goo, B. K. Hwang, J. H. Choi, U. I. Chung, and Y. B. Koh, “Reliable and simple Non-etch back process for inter-metal dielectric (IMD) of 256M DRAM using spin-on hydrogen silsesquioxane”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 329-332 (1997). [42] R. Swope, W. S. Yoo, J. Hsieh, and H. T. Nijenhuis, “Nitrous oxide plasma surface treatment of PECVD FSG films”, Proc. Int. Dielectrics for ULSI Multi-level Interconnection Conference, p. 295-301 (1996). [43] R. Manepalli, K. D. Farnsworth, S. A. B. Allen, and P. A. Kohl, “Multilayer Electron-Beam Curing of Polymer Dielectric for Electrical Interconnections”, Electrochemical and solid-state letter, 3, p. 228-231 (2000). [44] Y. Shimogaki, S. W. Lim, Y. Nakano, K. Tada, and H. Komiyama, “The con-tribution on Si-O vibration modes to the dielectric constant of SiO2:F film”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 36-43 (1996). [45] Y. Liu, K. Chung, C. Saha, H. C. Liou, M. Spaulding, J. Pretzer, and J. Brem-mer, “Advance cure processing of hydrogen silsesquioxane for low dielectric con-stant”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 155-158 (1998). [46] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Preparation of low dielectric constant F‐doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl. Phys. Lett., 68, p. 832-834, (1996). [47] C. Y. Chang and S. M. Sze, “ ULSI Technology”, McGraw-Hill Company U. S. A, p. 453 (1996). [48] M. A. Fury, “CMP processing with low-k dielectrics”, Solid State Technology, 42, p. 87-96 (1999). [49] T. J. Licata, E. G. Colgan, J. M. E. Harper, and S. E. Luce, “Interconnect fabri-cation processes and the development of low-cost wiring for CMOS products”, IBM Journal of Research & Development, 39, p. 419-435 (1995). [50] W. S. Yoo, R. Swope, and D. Mordo, “Plasma Enhanced Chemical Vapor Dep-osition and Characterization of Fluorine Doped Silicon Dioxide Films”, Jpn. J. Appl. Phys., 36, p. 267-272 (1997). [51] T. Homma, “Instability of Si-F bonds in fluorinated silicon oxide (SiOF) films formed by various techniques”, Thin Solid Films, 278, p. 28-31 (1996). [52] H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, “Densified SiOF Film Formation for Preventing Water Absorption”, Jpn. J. Appl. Phys., 35, p. 1583-1587 (1996). [53] T. Homma, R. Yamaguchi, and Y. Murao, “A Room Temperature Chemical Vapor Deposition SiOF Film Formation Technology for the Interlayer in Submi-cron Multilevel Interconnections”, J. Electrochem. Soc., 140, p. 687-692 (1993). [54] T. Homma, R. Yamaguchi, and Y. Murao, “Flow Characteristics of SiOF Films in Room Temperature Chemical Vapor Deposition Utilizing Fluo-ro-Trialkoxy-Silane Group and Pure Water as Gas Sources”, J. Electrochem. Soc., 140, p. 3599-3603 (1993). [55] B. K. Hwang, J. H. Choi, S. W. Lee, K. Kishimoto, T. Usami, H. Kawamoto, K. Ueno, and M. Y. Lee, “Elimination of Al Line and Via Resistance Degradation under HTS Test in Application of F-Doped Oxide as Intermetal Dielectric”, Jpn. J. Appl. Phys., 35, p. 1588-1592 (1996). [56] V. L. Shanno and M. Z. Karim, “Study of the material properties and suitability of plasma-deposited fluorine-doped silicon dioxides for low dielectric constant interlevel dielectrics”, Thin Solid Films, 270, p. 498-502 (1995). [57] P. Weigand, N. Shoda, T. Matsuda, S. Nguyen, J. Rzuczek, M. J. Shapiro, T. Jones, and R. Ploessl, “HDPCVD Silicon Oxide Deposition: The Effect of Sput-tering on Film Properties”, Proceedings of the Thirteenth International VMIC, p. 75-80 (1996). [58] S. M. Lee, M. Park, K. C. Park, J. T. Bark, and J. Jang, “Low Dielectric Con-stant Fluorinated Oxide Films Prepared by Remote Plasma Chemical Vapor Dep-osition”, Jpn. J. Appl. Phys., 35, p. 1579-1582 (1996). [59] M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol., A15, p. 2915-2922 (1997). [60] G. Lucovsky and H. Yang, “Fluorine atom induced decreases to the contribu-tion of infrared vibrations to the static dielectric constant of Si-O-F alloy films”, J. Vac. Sci. Technol., A15, p. 836-843 (1997). [61] J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, and G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma‐enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor”, J. Vac. Sci. Technol. A, 8, p. 1374-1381 (1990). [62] N. Lifshitz and G. Smolinsky, “Hot-carrier aging of the MOS transistor in the presence of spin-on glass as the interlevel dielectric”, IEEE Electron Device Lett., 12, p. 140-142 (1991). [63] H. Miyajima, R. Katsumata, N. Hayasaka, and H. Okano, Proceedings of 16th the symposium on Dry Process, Tokyo, Japan, p. 133 (1994). [64] S. Takeishi, H. Kudo, R. Shinohara, A. Tsukune, Y. Satoh, H. Miyazawa, H. Harada, and W. S. Yoo, “Stabilizing Dielectric Constants of Fluorine-Doped SiO2 Films by N2O-Plasma Annealing”, J. Electrochem. Soc., 143, p. 381-385 (1996). [65] S. V. Nguyen, “High-Density Plasma Chemical Vapor Deposition of Sili-con-Based Dielectric Films for Integrated Circuits”, IBM J. Res. Develop., 43, p. 109-126 (1999). [66] P. Singer, “The future of dielectric CVD: High-density plasmas”, Semicond. Int., p. 126-134 (1997). [67] C. Shim, J. Yang, M. Choi, and D. Jung, “Characteristics under Bi-as-Temperature-Stress of Cu/Low-k a-SiCO:H Structures Prepared by Plasma Enhanced Chemical Vapor Deposition Using a Hexamethyldisilane Precursor and Cu Sputtering”, Jpn. J. Appl. Phys., 42, p. L910-L913 (2003). [68] M. Naik, S. Parikh, P. Li, J. Educato, D. Cheung, I. Hashim, P. Hey, S. Jenq, T. Pan, F.Redeker, V. Rana, B. Tang, and D. Yost, “Process integration of double lev-el copper-low k (k=2.8) interconnect”, Proceedings of 1999 IEEE Conference, p.181-183 (1999). [69] G. A. Dixit, K. J. Taylor, A. Singh, C. K. Lee, G. B. Shinn, A. Konecni, W. Y. Hsu, K. Brennan, Mi-Chang Chang, and R. H. Havemann, "An Integrated Low Resistance Aluminum Plug and Low-k Polymer Dielectric for High Performance 0.25μm Interconnects," Symposium on VLSI Technology, Digest of Technical Pa-pers, p. 86-87 (1996). [70] S. Bothra, M. Kellam, and G. Garrou, in Int. “VLSI Multilevel Interconnection Conf. Proc., Santa Clara, CA, 8-9 June, p. 131 (1993). [71] J. Cluzel, F. Mondon, Y. Loquest, Y. Morand, and G. Reimbold, “Electrical characterization of low permittivity materials for ULSI inter-metal-insulation”, Microelectronics Reliability, 40, p. 675-678 (2000). [72] S. Q. Wang and B. Zhao, “Gap fill dependence of fluorinated polyimide films on solid content, adhesion promoter, spin dwell time, and solvent spray”, J. Vac. Sci. Technol. B, 14, p. 2656-2659 (1996). [73] F. Kuchenmeister, U. Schubert, and C. Wenzel, “SiLK dielectric planarization by chemical mechanical polishing”, Microelectronics Engineering, 50, p. 47-52 (2000). [74] A. T. Kohl, R. Mimna, R. Shick, L. Rhodes, Z. L. Wang, and P. A. Kohl, “Low k, Porous Methyl Silsesquioxane and Spin-On-Glass”, Electrochemical and Sol-id-State Letters, 2, p. 77-79 (1999). [75] C. T. Chua, G. Sarkar, and X. Hu, “In Situ Characterization of Methylsilses-quioxane Curing”, J. Electrochem. Soc., 145, p. 4007-4011 (1998). [76] J. Waeterloos, H. Meynen, B. Coenegrachts, J. Grillaert, and L. V. Hove, Pro-ceedings Dielectrics for ULSI Multilevel Interconnect Conference, p. 52-60 (1996). [77] T. C. Chang, P. T. Liu, Y. J. Mei, Y. S. Mor, T. H. Perng, Y. L. Yang, and S. M. Sze, “Effects of H2 plasma treatment on low dielectric constant methylsilsesqui-oxane”, J. Vac. Sci. Technol. B, 17, p. 2325-2330 (1999). [78] Y. H. Kim, S. K. Lee, and H. J. Kim, “Low-k Si-O-C-H composite films pre-pared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, J. Vac. Sci. Technol. A, 18, p. 1216-1619 (2000). [79] Y. Uchida, K. Taguchi, S. Sugahara, and M. Matsumura, “A Fluorinated Or-ganic-Silica Film with Extremely Low Dielectric Constant”, Jpn. J. Appl. Phys., 38, p. 2368-2372 (1999). [80] X. Jun, C. S. Yang, H. R. Jang, and C. K. Choi, “Chemical Structure Evolution of SiOCH Films with Low Dielectric Constant during PECVD and Postannealing”, J. Electrochem. Soc., 150, p. F206-F210 (2003). [81] S. P. Murarka, "Low Dielectric Constant Materials for Interlayer Dielectrics," Solid State Technol., 39, p. 83-90 (1996). [82] M. J. Loboda, “New solutions for intermetal dielectrics using trimethylsi-lane-based PECVD processes”, Microelectronic Engineering, 50, p. 15-23 (2000). [83] S. Yang, J. C. H. Pai, C. S. Pai, G. Dabbagh, O. Nalamasu, E. Reichmanis, J. Seputro, and Y. S. Obeng, “Processing and characterization of ultralow-dielectric constant organosilicate”, J. Vac. Sci. Tech. B, 19, p. 2155-2161 (2001). [84] G. Lucovsky, D. E. Ibbotson, and D. W. Hess, “Characterization of Plasma En-hanced CVD Processes”, Eds., Mater. Res. Soc. Symp. Proc. 165 (1989). [85] S. V. Nguyen, “Plasma-Assisted Chemical Vapor Deposition”, Handbook of Thin-Film Deposition Processes and Techniques, Klaus K. Schuegraf, Ed., Noyes Publications, Park Ridge, NJ, pp. 112-141 (1998). [86] T. Ishimara, Y. Shioya, H. Ikakura, M. Nozawa, Y. Nishimoto, S. Ohgawara, and K. Maeda, “Development of low-k copper barrier films deposited by PE-CVD using HMDSO, N2O and NH3 ”, Proceedings of 2001 IEEE VLSI, p. 36-38 (2001). [87] C. C. Chiang, M. C. Chen, C. C. Ko, Z. C. Wu, S. M. Jang, and M. S. Liang, “Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited α-SiC:H Films from Trimethylsilane and Tetramethylsilane”, Jpn. J. Appl. Phys., 42, p. 4273-4277 (2003). [88] J. Martin, S. Filipiak, T. Stephens, F. Huang, M. Aminpur, J. Mueller, E. Demircan, L. Zhao, J. Werking, C. Goldberg, S. Park, T. Sparks, and C. Esber, “Integration of SiCN as a low k etch stop and Cu passivation in a high perform-ance Cu/low k interconnect”, Proceedings of 2002 IEEE VLSI, p. 42-44 (2002). [89] K. Hinode, 1. Asano, and Y. Homma, “Void formation mechanism in VLSI aluminum metallization”, IEEE Trans. Electron Devices, 36, p. 1050-1055 (1989). [90] K. Hinode and Y. Homma, “Improvement of electromigration resistance of layered aluminum conductors.” in Proc. 28lh Inf. Reliability Physic Sym., p. 25-30 (1990). [91] T. Fujii, K. Okuyama, S. Morihe, Y. Torii, H. Katto, and T. Agatsu-ma,“Comparison of electromigration phenomenon between aluminum intercon-nection of various multilayered materials,” in Proc. 6th VLSI Multilevel Intercon-nection Cons., p. 477-483 (1989). [92] T. Kikkawa, H. Aoki, E. Ikawa, and J. Drynan, “A quarter-micron interconnec-tion technology using AI-Si-Cu/TiN alternated layers”, in IEDM Tech. Dig., p. 281-284 (1991). [93] International Technology Roadmap for Semiconductors. In-terconnects [94] F. M. D'Heurle, “Electromigration and Failure in Electronics: An Introduction,” in Proc. IEEE., 59, p. 1409 -1971 (1971). [95] H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, J. Phys.Chem. Solids, 20, p. 76-87 (1961). [96] E. T. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, “Electromigration Reliabil-ity Issue in Dual-Damascene Cu Interconnections”, IEEE Tran. Reliability, 51, p. 403-419 (2000). [97] K. N. Tu, “Electromigration in Stress Thin Film”, Phys.Rev. B., 45, p.1409-1413 (1992). [98] H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, J. Phys.Chem. Solids, 20, p. 76-87 (1961). [99] J. R. Lioyd, and J. J. Clement, “Electromigration in Copper Conductors”, Thin Soild Films, 262, p. 135-141 (1995). [100] A. Tezaki, T. Mineta, and H. Egawa, “Measurement of Three Dimensional Stress and Modeling of Stress Induced Migration Failure in Aluminum Interconnects”, in Proc. Int. Reliab. Phys. Symp., p. 221-229 (1990). [101] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. 148, p. F148-F153 (2001). [102] P. T. Liu, T. C. Chang, H. Su, Y. S. Mor, Y. L. Yang, H. Chung, J. Hou, and S. M. Sze,“Improvement in Integration Issues for Organic Low-k Hybrid-Organic-Siloxane-Polymer”, J. Electrochem. Soc. 148, p. F30-F34 (2001). [103] Y. L. Cheng, Y. L. Wang, C. W. Liu, Y. L. Wu, K. Y. Lo, C. P. Liu, and J. K. Lan, “Characterization and reliability of low dielectric constant fluorosilicate glass and silicon rich oxide process for deep sub-micron device application”, Thin Solid Films, 398, p. 533-538 (2001). [104] G. Passemard, P. Fugier, P. Nobel, F. Pires, and O. Demolliens, “Study of fluo-rine stability in fluoro-silicate glass and effects on dielectric properties”, Micro-electron. Eng., 33, p. 335-342 (1997). [105] H. Yang and G. Lucovsky, “Stability of Si-O-F low-k dielectrics: Attack by wa-ter molecules as function of near-neighbor Si-F bonding arrangements”, J. Vac. Sci. Technol. A 16, p. 1525-1528 (1998). [106] Y. L. Cheng, Y. L. Wang, C. W. Liu, Y. L. Wu, K. Y. Lo, C. P. Liu, and J. K. Lan, “Optimization of post-N2 treatment and undoped-Si-glass cap to improve metal wring delamination in deep submicron high-density plasma-fluorinated silica glass intermetal dielectric application”, J. Vac. Sci. Technol. B, 22, p. 1792-1796 (2004). [107] S. Lee and J. W. Park, “Effect of Oxygen Post Plasma Treatment on Character-istics of Electron Cyclotron Resonance CVD Fluorine-Doped Silicon Dioxide Films Using SiF4 and O2 Gas Sources”, J. Electrochem. Soc., 146, p. 697-701 (1999). [108] W. C. Hsiao, C. P. Liu, Y. L. Wang, and Y. L. Cheng, “Characterization and thermal stability of fluorosilicate glass films deposited by high density plasma chemical vapor deposition with different bias power”, Thin Solid Films, 498, p. 289-293 (2006). [109] M. K. Bhan, J. Huang, and D. Cheung, “Deposition of stable, low κ and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films”, Thin Solid Films, 308, p. 507-511 (1997). [110] M. J. Shapiro, T. Matsuda, S. V. Nguyen, C. Parks, and C. Dziobkowski, “Fluo-rine Diffusion from Fluorosilicate Glass”, J. Electrochem. Soc., 143, p. L156-L158 (1997). [111] K. Tomioka, E. Soda, N. Kobayashi, M. Takata, S. Uda, K. Ogushi, Y. Yuba, and Y. Akasaka, “Influences of atomic hydrogen on porous low-k dielectric for 45-nm node”, Thin Solid Films, 515, p. 5031-5034 (2007). [112] D. D. Roest, Y. Travaly, J. Beynet, H. Sprey, J. Labat, C. Huffman, P. Verdonck, S. Kaneko, K. Matsushita, N. Kobayashi, and G. Beyer, “Variation in process con-ditions of porogen-based low-k films: A method to improve performance without changing existing process steps in a sub-100 nm Cu damascene integration route”, Microelectron. Eng., 87, p. 311-315 (2010). [113] A. Grill and V. Patel. “Low dielectric constant films prepared by plas-ma-enhanced chemical vapor deposition from tetramethylsilane”, J. Appl. Phys., 85, p. 3314-3318 (1999). [114] J. Widodo, L. N. Goh, W. Lu, S. G. Mhaisalkar, K. Y. Zeng, and L. C. Hsia, “Comparative Study of Trimethyl Silane and Tetramethylcyclotetrasiloxane-Based Low-k Films”, J. Electrochem. Soc., 152, p. G246-G251 (2005). [115] Q. Wu and K. K. Gleason, “Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, J. Vac. Sci. Technol. A, 21, p. 388-394 (2003). [116] Y. L. Cheng, Y. L. Wang, Y. Juang, M. L. O'Neill, A. S. Lukas, E. J. Karwachi, S. A. McGuigan, A. Tang, and C. W. Wu, “Organofluorosilicate glass: A dense low-k dielectric with superior materials properties”, J. Phy. Chem. Solids, 69, p. 518-522 (2008). [117] M. Petersen, M. T. Schulberg, and L. A. Gochberg, “Density functional theory analysis of infrared modes in carbon-incorporated SiO2”, Appl. Phys. Lett., 82, p. 2041-2043 (2003). [118] V. Ligatchev, T. K. S. Wong, B. Liu, and Rusli, “Atomic structure and defect densities in low dielectric constant carbon doped hydrogenated silicon oxide films, deposited by plasma-enhanced chemical vapor deposition”, J. Appl. Phys., 92, p. 4605-4611 (2002). [119] T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, and S. M. Sze, “Recovering Dielectric Loss of Low Dielectric Constant Organic Siloxane during the Photoresist Removal Process”, J. Electrochem. Soc., 149, p. F81-F84 (2003). [120] K. Kim, J. Song, D. Kwon, and G. S. Lee, “Effect of fluorine on chemical and electrical properties of room temperature oxide films prepared by plasma en-hanced chemical vapor deposition” Appl. Phys. Lett., 72, p. 1247-1249 (1998). [121] J. M. Park and S. W. Rhee, “Remote Plasma-Enhanced Chemical Vapor Deposi-tion of Nanoporous Low-Dielectric Constant SiCOH Films Using Vinyltrimethyl-silane”, J. Electrochem. Soc., 149, p. F92-F97 (2002). [122] J.-S. Chou and S.-C. Lee, “Effect of porosity on infrared‐absorption spectra of silicon dioxide”, J. Appl. Phys., 77, p. 1805-1807 (1995). [123] Y. W. Koh, K. P. Loh, L. Rong, A. T. S. Wee, L. Huang, and J. Sudijono, “Low dielectric constant a-SiOC:H films as copper diffusion barrier”, J. Appl. Phys., 93, p. 1241-1245 (2003). [124] T. Ishimaru, Y. Shioya, H. Ikakura, M. Nozawa, S. Ohgawara, T. Ohdaira, R. Suzuki, and K. Maeda, “Properties of Low-k Copper Barrier SiOCH Film Depos-ited by PECVD Using Hexamethyldisiloxane and N2O”, J. Electrochem. Soc., 150, p. F83-F89 (2003). [125] Y. Shioya, K. Maeda, T. Ishimaru, H. Ikakura, T. Masubuchi, T. Ohdaira, and R. Suzuki, “Properties of Low-k Cu Barrier SiOCNH Film Deposited by Plas-ma-Enhanced Chemical Vapor Deposition using Hexamethyldisiloxane and Am-monia Gases”, Jpn. J. Appl. Phys., 43, p. 750-756 (2004). [126] Z. Tokei, K. Croes, and G. P. Beyer, “Reliability of copper low-k interconnects”, Microelectron. Eng., 87, p. 348-354 (2010). [127] F. Chen and M. Shinosky, “Addressing Cu/Low- Dielectric TDDB-Reliability Challenges for Advanced CMOS Technologies”, IEEE Trans. Electron Device, 56, p. 2-12 (2009). [128] P. S. Ho, K.-D. Lee, S. Yoon, X. Lu, and E. T. Ogawa, “Effect of low k dielectrics on electromigration reliability for Cu interconnects”, Mater. Sci. Semicond. Process., 7, p. 157-163 (2004). [129] T. Usui, H. Miyajima, H. Masuda, K. Tabuchi, K. Watanabe, T. Hasegawa, and H. Shibata, “Physical and Barrier Properties of Plasma Enhanced Chemical Vapor Deposition α-SiC:N:H Films”, Jpn. J. Appl. Phys., 42, p. 4489-4494 (2003). [130] T. Fujii, K. Okuyama, S. Moribe, Y. Torri, H. Katto, and T. Agatsuma, “Comparison of electromigration phenomenon between aluminum interconnection of various multilayered materials”, in Proc. 6th VLSI Multilevel Interconnection Conf., p. 477-483 (1989). [131] J. Tao, N. W. Cheung, and C. Hu, “Metal Electromigration Damage Healing Under Bidirectional Current Stress”, IEEE Electron Device Lett., 14, p. 554-556 (1993). [132] Bohr, Mark T., “Interconnect Scaling - The Real Limiter to High Performance ULSI”, Proceedings of the 1995 IEEE International Electron Devices Meeting, p. 241-242 (1995).
摘要: 為了使IC產業繼續符合Moore’s law,在元件尺寸持續不斷縮小的情況下,多層金屬內連導線已經被運用來增加晶片上的積集度,但內連導線的時間延遲卻比整個元件的時間延遲來得更加嚴重。多層金屬內連導線是由金屬導線、層與層之間的介電層薄膜、金屬之間的介電層薄膜所組成。隨著元件尺寸縮減,後段金屬導線亦需跟隨著微型化且單一層導線而不敷使用,必須建構多層內導線才得以全部連結,除增加製造程序的複雜度外,與元件微型化不同的是,金屬導線傳輸的速度會隨著尺寸之縮短而更加遲緩,衍生所謂電阻-電容時間延遲(RC delay time)。在内連導線結構中,使用低介電常數材料是一可行且克服此問題的方法之一。 本論文是探討數個低介電常數和電阻器材料之性質及其在半導體製程整合和可靠度研究。主要研究的材料包括:氟矽玻璃(Fluorosilicate glass, FSG),以二乙氧基甲基矽烷(Diethoxymethylsiliane, DEMS)和三甲基矽甲烷(Trimethylsilane, 3MS)為反應前驅物的摻碳有機矽鹽玻璃(Carbon-doped organo-silicate glass, OSG) 等低介電常數和Ti/TiN 薄膜電阻器材料。 在HDP-CVD FSG薄膜製程中,加入N2條件下;由實驗結果顯示,Si-F的濃度增加,進而降低介電常數值並且增進間隙填充能力。此外,在半導體製程中,熱處理為不可避免的步驟,因此高熱阻抗也為低介電材料必要之條件。吾人發現N-FSG可改變沉積薄膜之結構,得到較佳的低介電材料性質亦可增加製程整合之穩定性。 在PECVD的製程條件下,較低之介電常數及較高之機械性質是同時被要求的,對於IC的速度和後段封裝而言。吾人發現利用二乙氧基甲基矽烷(Diethoxymethylsiliane, DEMS)來取代目前所用之反應前驅物三甲基矽甲(Trimethylsilane, 3MS);由實驗結果顯示,在薄膜的性質及實際的製程整合結構中,DEMS-based 的低介電質沉積膜有較優良之電性性質、機械強度及熱穩定性,以及在製程整合中之優越性。 以Ti/TiN薄膜為電阻器的電性和可靠性已經被研究。實驗結果證明以Ti/TiN薄膜為電阻器時具有良好的熱穩定性。經由電性量測和電流應力測試結果顯示,Ti層薄膜相較於TiN層薄膜具較低的電阻抗能力。此外,在電流應力測試後,主要失效機制是Joule-heating造成Ti/TiN薄膜電阻器晶粒成長和線路斷路。Ti和TiN薄膜其活化能分別為1.8和1.2eV。假設Ti/TiN薄膜電阻器操作溫度小於311oC下,其可靠度可確保在十年的操作期間Ti/TiN薄膜的電阻值不會發生變化。
In order to integrated circuit (IC) industry following Moore's law, for scal-ing downing the device the multilevel interconnect had used to increase the densities of circuits on a chip, interconnect delay is becoming predominant over device delay time. As the device dimensions continue to shrink, interconnect delay becomes a lim-iting factor for increasing circuit device speed. The multilevel interconnect basically consists of metal layers, inter-layer dielectric (ILD) and inter-metal dielectric (IMD). As the device dimensions continue to shrink, interconnect delay becomes a limiting factor for increasing circuit device speed. Since interconnect delay is the product of the resistance in metal interconnect and the capacitance between the metal lines, the minimization of the parasitic capacitance and the resistance in interconnect is required. Incorporation of low-dielectric-constant materials in multilevel interconnect can ef-fectively reduce parasitic capacitance, thus decreasing the transmission delay. In this study, several kinds of low dielectric constant and resistors materials are investigated, including fluorine-silicate-glass (FSG), carbon-doped organo-silicate glass using trimethylsilane (3MS) and diethoxymethylsilane (DEMS) as precursors, and Ti/TiN thin films. The effects of the low-k dielectric constant materials on the in-tegration issue are studied to evaluate the compatibility of low-k materials on semi-conductor process. Moreover, the reliability of Ti/TiN thin film resistors were demon-strated no wear out issue below 311oC. As N2 is added in the FSG films by high-density-plasma chemical vapor deposition (HDP-CVD) method, higher fluorine concentration, reduced dielectric constant and improved gap filling ability of the deposited films have been achieved. It is proposed that the improvement of stability is correlated with the reduction of unstable fluorine bonds in the N-FSG films. Furthermore, the thermal stability of the N-FSG films was also identified by Al wiring delamination check. After annealing, the blister was observed only in non-N2 FSG film with 5.5 % Si-F concentration, while no blisters or delamination were observed when N2 is introduced into the FSG process. Therefore, the N-FSG film, deposited by HDP-CVD, is a good candidate for interconnects dielectric application. Lower dielectric constant as well as higher mechanical strength of plasma en-hanced chemical vapor deposition (PE-CVD) low-k films is required for IC speed and package. Both low-k films deposited using 3MS and DEMS precursors have similar elemental composition, but different bonding structures, leading to different integra-tion results. DEMS-based low-k films have a lower dielectric constant, higher hard-ness, and higher chemical and thermal stability than 3MS-based low-k films. From the results of blanket films and four-level interconnect test devices, the DEMS-based films were found to have superior electrical performance than that of the 3MS-based films. Ti/TiN thin film resistors were characterized by making electrical and reliability measurements. The results demonstrate that the Ti/TiN thin film resistor has an ex-cellent thermal stability up to 350oC. Based on electrical measurement and stress, the Ti layer has a lower electrical resistance than the TiN layer. Furthermore, the main failure mechanism of the Ti/TiN thin film resistors is thermally activated by Joule-heating. The thermal activation energy for failure is determined to be 1.8 eV for the Ti layer and 1.2 eV for the TiN layer. Based on this result, Ti/TiN thin film resis-tors exhibit no significant change in resistance during a lifetime of ten years if their temperature remains below 311oC.
其他識別: U0005-0502201216400000
Appears in Collections:材料科學與工程學系



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.