Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10103
標題: 聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物/導電填料奈米複合材料之製備與特性研究
Preparation and Characterization of Polycarbonate / Acrylonitrile-Butadiene-Styrene Copolymer / Conductive Filler Nanocomposite
作者: Wang, Chen-Cheng
王禎呈
關鍵字: extrinsically conductive polymer
非本質型導電高分子
multi-walled carbon nanotube
carbon black
free radical grafting
多壁奈米碳管
碳黑
自由基接枝
出版社: 材料科學與工程學系所
引用: [1] S. Komarneni, “Nanocomposites”, J. Mater. chem., 1982, 2, 1219. [2] 林景正、賴宏仁,“奈米科技技術與發展趨勢”,工業材料,88年,153期,7。 [3] Babbar, G. N. Mathur, “Rheological properties of blend of polycarbonate with poly(acrylonitrile butadiene styrene)”, Polymer, 1994, 12, 2631. [4] S. Balakrishnan, N. R. Neelakantan, “Mechanical properties of blends of polycarbonate with unmodified and maleic anhydride grafted ABS”, Polymer International, 1998, 45, 347. [5] Z. Y. Tan, X. F. Xu, S. L. Sun, C. Zhou, Y. H. Ao, H. X. Zhang, Y. Han, “Influence of rubber content in wide range on the mechanical properties and morphology of PC/ABS blends with different composituon”, Polymer Engineering and Science, 2006, 1002, 1477. [6] C. Y. Wong, “Polycarbonate effects on selected mechanical properties of polycarbonate/acrylonitrile-butadiene-styrene(PC/ABS)binary blending systems”, Polymer-Plastics Technology and Engineering, 2003, 42, 171. [7] I. K. Varma, G. Gupta, C. S. Sidhu, “Intrinsically conducting polymer blends”, Macromol Symp., 2001, 164, 401. [8] J. C. Huang, “Carbon black filled polymer blends”, Adv. polym. Tech., 2002, 21, 299. [9] 吳知行,“苯胺的電化學聚合”,化工技術,86年,2期,44。 [10] D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, “Spectra and the Semiconduct-ivity of the (SN)x polymer”, J. Chem. Soc., Faraday Tran., 1964, 294, 60. [11] H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymer:Halogen derivatives of polyacetylene, (CH)x”, J. Chen. Soc. Chem. Commum., 1977, 16, 578. [12] H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev Lett., 1977, 39, 1098. [13] 王仕漢,“多壁奈米碳管/導電型碳黑應用於複合型導電高分子之電性研究”,交通大學半導體材料與製程產業碩士專班論文,2008。 [14] H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl, R. E. Smalley, “The formation of long carbon chain molecules during laser vaporization of graphite”, Nature, 1986, 109, 359. [15] S. Iijima, “Helical microtubes of graphitic carbon”, Nature, 1991, 56, 354. [16] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 1993, 603, 363. [17] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes”, Nature, 1993, 305, 363. [18] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Phys. Rev. B, 1992, 45, 6234. [19] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, “Exceptionally high Young''s modulus observed for individual carbon nanotubes”, Nature, 1996, 678, 381. [20] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics elasticity, strength, toughness of nanorods and nanotubes”, Science, 1997, 1971, 277. [21] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science, 2000, 637, 287. [22] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, “Structural flexibility of carbon nanotubes”, J. Chem. Phys., 1996, 2089, 104. [23] M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, “Nanotubes: a revolution in materials science and electronics”, Topics in Current Chemistry, 1998, 1, 199. [24] J. Hone, M. Whitney, C. Piskoti, A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev., 1999, 2514, 59. [25] M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnology, 2001, 21, 12. [26] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature, 1996, 54, 382. [27] J. E. Fischer, “Chemical doping of single-wall carbon nanotube”, Acc. Chem. Res., 2002, 35, 1079. [28] R. T. K. Baker, P. S. Harries, “Chemistry and physics of carbon”, Marcel Dekker, 1978, 14, 83. [29] S. C. Tsang, Y. K. Chen, M. L. H. Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature, 1994, 372, 159. [30] R. M. Lago, S. C. Tsang, M. L. H. Green, “Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups”, J. Chem. Soc., Chem. Commu., 1995, 45, 1355. [31] H. Hiura, T. W. Ebbesen, K. Tanigaki, “Opening and purification of carbon nanotubes in high yields”, Adv. Mater., 1995, 7, 275. [32] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, Science, 1998, 280, 1253. [33] A. Kuznetsova, I. Popova, J. T. Yates Jr., M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes:NEXAFS and vibrational spectroscopic studies”, J. Am. Chem. Soc., 2001, 123, 10699. [34] D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates Jr., J. Liu, R. E. Smalley, “Infrared spectral evidence for the etching of carbon nanotubes:Ozone oxidation at 298 K”, J. Am. Chem. Soc., 2000, 122, 2383. [35] J. I. Xie, N. Y. Zhang, M. Guers, V. K. Varadan, “Ultraviolet-curable polymers with chemically bonded carbon nanotubes for microelectromechanical system applications”, Smart Materials & Structures, 2002, 11, 575. [36] T. Wang, X. Hu, X. Qu, S. Dong, “Noncovalent functionalization of multiwalled carbon nanotubes: application in hybrid nanostructures”, J. Phys. Chem., 2006, 110, 6631. [37] W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, “Sonication-assisted functionalization and solubilization of carbon nanotubes”, Nano Lett., 2002, 2, 231. [38] D. Q. Yang, J. F. Rochette, E. Sacher, “Functionalization of multiwalled carbon nanotubes by mild aqueous sonication,” J. Phys. Chem. B, 2005, 109, 7788. [39] J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Solution properties of single-walled carbon nanotubes”, Science,1998, 282, 95. [40] Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave, “Cutting single-wall carbon nanotubes through fluorination”, Nano Lett., 2002, 2, 1009. [41] M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Dissolution of single-walled carbon nanotubes”, Adv. Mater., 1999, 11, 834. [42] U. D. Weglikowska, J. M. Benoit, P. W. Chiu, R. Graupner, S. Lebedkin, S. Roth, “Chemical functionalization of single walled carbon nanotubes”, Current Applied physics, 2002, 2, 497. [43] V. Georgakilas, K. Kordatos, M. Prato, M. Holzinger, A. Hirsch, “Organic functionalization of carbon nanotubes”, J. Am. Chem. Soc., 2002, 124, 760. [44] Y. Wang, Z. Iqbal, S. Mitra, “Rapidly functionalized, waterdispersed carbon nanotubes at high concentration”, J. Am. Chem. Soc., 2006, 128, 95. [45] Y. Yunming, R. K. Saini, F. Liang, A. K. Sadana, W. E. Bulleps, “Functionaliaztion of carbon nanotubes by free radicals”, Organic Letters, 2003, 5, 9, 1471. [46] H. L. Wu, Y. T. Yang, C. C. M Ma, H. C. Kuan, “Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites”, Journal of Polymer Science, 2005, 43, 6084. [47] 周琬蓉,“電漿有機改質奈米碳管高分子複合材料之特性與探討”,成功大學化學工程所碩士論文,2010。 [48] 王崇豪,“碳奈米管/聚胺基甲酸酯複合材料製備及其性質研究”,清華大學化學工程所碩士論文,2006。 [49] 張柏生,“共混高聚物-碳黑複合材料的導電規律”,現代塑料加工應用,85年,3期,59。 [50] 郭衛紅、汪濟奎,“現代功能材料及應用”,新材料與應用技術叢書,2006。 [51] P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite”, Science, 1994, 265, 1212. [52] M. S. P. Shaffer, A. H. Windle, “Fabrication and characterization of carbon nanotube/poly(vinyl alcohol)composite”, Adv. Mater., 1999, 11. 937. [53] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite”, Composites Science and Technology, 2002, 62, 1993. [54] X. W. Jiang, Y. Z. Bin, M. Matsuo, “Electrical and mechanical properties of polyimide carbon nanotubes composites fabricated by in situ polymerization”, Polymer, 2005, 46, 7418. [55] P. Po¨tschke, T. D. Fomers, D. R. Paul, “Rheological behavior of multiwalled carbon nanotube/polycarbonate composites”, Polymer, 2002, 43, 3247. [56] P. Po¨tschke, A. R. Bhattacharyya, A. Janke, “Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate”, Polymer, 2003, 44, 8061. [57] P. Po¨tschke, A. R. Bhattacharyya, A. Janke, S. Pegel, A. Leohardt, C. Taschner, M. Ritschel, S. Roth, B. Hornbostel, “Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene”, Fullerenes Nanotubes Carbon Nanostruct, 2005, 13, 211. [58] L. Chen, X. J. Pang, Z. L. Yu, “Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing”, Materials Science and Engineering, 2007, 457, 287. [59] S. Kawasaki, M. Yamada, K. Kobori, F. Jin, T. Takata, “Fine dispersion of carbon black in fluorene-based resin”, Polymer Composites, 2008, 9, 1044. [60] C. Y. Huang, C. C. Wu, “The EMI shielding effectiveness of PC/ABS/nickel coatedcarbon fibre composites”, European Polymer Journal, 2000, 36, 2729. [61] Y. Sun, Z. X. Guo, J. Yu, “Effect of ABS rubber content on the localization of MWCNTs in PC/ABS blends and electrical resistivity of the Composites”, Macromol. Mater. Eng., 2010, 295, 263.
摘要: 由於非本質型導電高分子之基材並不導電,故藉由導電填料之添加於高分子基材中,將使其複合材料具導電性。本研究主要利用物理混摻之方式,分別將改質前後之一維多壁奈米碳管(MWNT)與零維碳黑(CB)添加於聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)中,並藉由不同比例的導電填料添加量,來探討其對於複合材料之導電性、機械性質與熱性質的影響性。 本研究第一部份將製備出表面官能基化的多壁奈米碳管,首先利用馬來酸酐(MA)對奈米碳管進行自由基接枝之表面修飾反應,並命名為MWNT-MA。藉由奈米碳管表面有機化改質,以增加其後續作為奈米碳管複合材料的應用性。然而,從穿透式電子顯微鏡(TEM)圖觀察發現,經表面修飾之MWNT,其表面明顯地披覆一層不規則狀的高分子;且拉曼光譜(Raman)中亦顯示,因表面自由基的產生,可進一步破壞MWNT表面的雙鍵結構,並使修飾後MWNT-MA之D-band與G-band,其比值由未修飾前的1.20上升至1.48;此外,在熱重損失分析(TGA)方面,經與未修飾奈米碳管之600 ℃殘留重量相比較後,可推算出MA官能基化之奈米碳管,其表面約有14.6 wt%的有機官能基接枝成功。 另研究之第二部份將分別添加MWNT、MWNT-MA與CB等導電填料於不同比例之PC/ABS共聚物中,依其混練後的複合材料電氣性質結果來看,當分別添加1.0 wt% MWNT、1.5 wt% MWNT-MA或12 wt% CB等不同導電填料於PC/ABS合膠材料時,其複合材料的表面電阻值約達相同之103 Ω/□表現。故從零維之碳黑添加量,分別為MWNT、MWNT-MA的12倍與8倍結果來看,對於只需微量添加的改質前後奈米碳管而言,其微量且易加工之特性,將有利於工業量產製程之發展與相對競爭力之提升。且除了電氣性質的增加外,微量的MWNT與MWNT-MA添加,亦可明顯地對其複合材料之拉伸性質、彎曲性質,增加約10 %的補強效果;惟熱性質改善部份,仍需仰賴較大量的碳黑導電填料之添加,方有助於其PC/ABS複合材料,達到較佳的熱性質提升。
In this study, the conductive polycarbonate(PC)/ acrylonitrile-butadiene-styrene copolymer(ABS)/ multi-walled carbon nanotube(MWNT)composites have been prepared using melt compounding method. The MWNT was modified using free radical reaction of maleic anhydride(MA)to graft on the surface of MWNT. For comparison, PC/ABS/carbon black(CB)composites were also fabricated through the same procedure. The electrical conductivity, mechanical and thermal properties of composites with various weight ratio will be discussed. Raman spectroscopy shows a strong band at 1580 cm-1(G mode)and a disordered-induced peak at 1355 cm-1(D mode), which may originate from the defects in the curned graphene sheets. Comparing the ID/IG ratio of the samples, which is 1.20 for MWNT and 1.48 for MA-modified MWNT, results the chemical functionalization increases the degree of disorder. The conductivity of fabricated PC/ABS composite would approach 103 Ω/□ by adding 1.0 wt% MWNT、1.5 wt% MWNT-MA and 12 wt% CB. The small amount of MWNT adding into PC/ABS system would also increase about 10 % in the tensile strength and flexural strength. But the high loading ratio of CB into this system could obtain better thermal property.
URI: http://hdl.handle.net/11455/10103
其他識別: U0005-0505201121130900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0505201121130900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.