Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10109
標題: 不同熱化學氣相沉積製程參數對以乙烯/氮氣製備碳薄膜性質之影響
Effects of different process parameters on the properties of carbon films prepared by thermal chemical vapor deposition using ethylene and nitrogen
作者: 黃柯傑
Huang, Ke-Jie
關鍵字: carbon film
碳薄膜
thermal chemical vapor deposition
ethylene
熱化學氣相沉積法
乙烯
出版社: 材料科學與工程學系所
引用: [1] J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2] M.I. Katsnelson, Materials Today, 10 (2007) 20. [3] R.J. King, Geology Today, 22 (2006) 71. [4] A. Deneuville, Comptes Rendus de l''Académie des Sciences - Series IV - Physics-Astrophysics, 1 (2000) 81. [5] E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, and W. Ebert, Journal of Physics D: Applied Physics, 34 (2001) R77. [6] R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S. M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [7] M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [8] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [9] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [10] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature, 347 (1990) 354. [11] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [12] R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature, 350 (1991) 320. [13] Y. Kawazoe, T. Kondow, and K. Ohno, “Clusters and Nanomaterials,” Springer, Heidelberg, Germany (2002). [14] S. Iijima, Nature, 354 (1991) 56. [15] L.R. Radovic, “Chemistry and Physics of Carbon,” Marcel Dekker, New York, U.S.A. (2003). [16] R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [17] A. Merkoçi, Microchimica Acta, 152 (2006) 157. [18] R.S. Chu and S.T. Shiue, Surface & Coatings Technology, 202 (2008) 5364. [19] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [20] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [21] X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [22] A. Czyzniewski, Surface & Coatings Technology, 203 (2009) 1027. [23] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [24] K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [25] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [26] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [27] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [28] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [29] A. K. Geim, Science, 324 (2009) 1530. [30] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [31] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [32] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature, 442 (2006) 282. [33] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, The Journal of Physical Chemistry B, 108 (2004) 19912. [34] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45 (2007) 1558. [35] K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, and T. Seyller, Nature Materials, 8 (2009) 203. [36] Z.Y. Juang, C.Y. Wu, A.Y. Lu, C.Y. Su, K.C. Leou, F.R. Chen, and C.H. Tsai, Carbon, 48 (2010) 3169. [37] P. Delhaes, Carbon, 40 (2002) 641. [38] R.W. Dayton, J.H. Oxley, and C.W. Townley, Journal of Nuclear Materials, 11 (1964) 1. [39] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202(2007) 798. [40] O.M.S. Filipe and C.M.A. Brett, Electroanalysis, 16 (2004) 994. [41] M. Hadi, A. Rouhollahi, M. Yousefi, F. Taidy, and R. Malekfar, Electroanalysis, 18 (2006) 787. [42] A.P. Graham, K. Richter, T. Jay, W. Weber, S. Knebel, U. Schröder, and T. Mikolajick, Journal of Applied Physics, 108 (2010) 104508. [43] G.P. Keeley, N. McEvoy, S. Kumar, N. Peltekis, M. Mausser, and G.S. Duesberg, Electrochemistry Communications, 12 (2010) 1034. [44] G. Aichmayr, A. Avellán, G.S. Duesberg, F. Kreupl, S. Kudelka, M. Liebau, A. Orth, A. Sänger, J. Schumann, and O. Storbeck, VLSI Technology, 2007 IEEE Symposium on, (2007) 186. [45] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 65 (2001) 163. [46] R.N. Basu, O. Altin, M.J. Mayo, C.A. Randall, and S. Eser, Journal of The Electrochemical Society, 148 (2001) A506. [47] C. Jie, X. Xiang, and X. Peng, Materials Chemistry and Physics, 116 (2009) 57. [48] N.E. Sorokina, D.V. Savchenko, S.G. Ionov, A.S. Tikhomirov, I.V. Nikol’skaya, and V.V. Avdeev, Journal of Physics and Chemistry of Solids, 71 (2010) 499. [49] M. Vinante, G. Digregorio, L. Lunelli, S. Forti, S. Musso, L. Vanzetti, A. Lui, L. Pasquardini, M. Giorcelli, A. Tagliaferro, M. Anderle, and C. Pederzolli, Journal of Nanoscience and Nanotechnology, 9 (2009) 3785. [50] H. Mohammadia and K. Mequanint, Medical Engineering & Physics, 33 (2011) 131. [51] D.K. Mynbaev and L.L. Scheiner, “Fiber-Optic Communications Technology,” Prentice-Hall, New Jersey, U.S.A. (2001). [52] K.C. Kao and G.A. Hockham, Proceedings of the Institution of Electrical Engineers, 113 (1966) 1151. [53] http://nobelprize.org/nobel_prizes/physics/laureates/2009/kao.html [54] J.P. Powers, “An Introduction to Fiber Optic Systems,” Aksen Associates, Boston, U.S.A. (1993). [55] A. Mendez and T. Morse, “Specialty Optical Fibers Handbook,” Academic Press, San Diego, U.S.A. (2007). [56] D.R. Biswas, Optical Engineering, 31 (1992) 1400. [57] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon, 39 (2001) 2376. [58] M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [59] 王世敏等人編著,「奈米材料原理與製備」,五南圖書出版公司 (2004)。 [60] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [61] A. Oberlin, Carbon, 40 (2002) 7. [62] S.T. Shiue, P.Y. Chen, R.H. Lee, T.S. Chen, and H.Y. Lin, Surface & Coatings Technology, 205 (2010) 780. [63] P.Y. Chen, “Effect of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2008). [64] R.H. Lee, “Hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition: effects of different acetylene/nitrogen ratios, temperatures, pressures, and flow rates on the properties of carbon coatings,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2009). [65] 賴宗福與張之樺,科學發展,455 (2010) 28。 [66] S. Pirzada, J.J. Liu, F. Li, B. Demczyk, and D. Spaulding, Journal of Applied Physics, 91 (2002) 7562. [67] O. Guise, H. Marbach, J. Levy, J. Ahner, and J.T.Y. Jr., Surface Science, 571 (2004) 128. [68] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [69] D.C. Ghimire, S. Adhikari, H.R. Aryal, S.M. Mominuzzamn, T. Soga, T. Jimbo, H. Uchida, and M. Umeno, Diamond and Related Materials, 17 (2008) 1724. [70] M. Mora, M. del C. Garcı′a, C. Jime′nez-Sanchidria′n, and F.J. Romero-Salguero, International Journal of Hydrogen Energy, 35 (2010) 4111. [71] J. Niu, L. Zhang, Z. Zhang, D. Liu, Y. Liu, and Z. Feng, Applied Surface Science, 256 (2010) 6887. [72] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [73] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [74] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [75] 汪建民主編,「材料分析」,中國材料科學學會 (2008)。 [76] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [77] T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [78] Instruction manual of the Four-point Probe (Model: QT-50). [79] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface & Coatings Technology, 200 (2006) 3041. [80] T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [81] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Carbon, 43 (2005) 1731. [82] J.M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, Carbon, 44 (2006) 1833. [83] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, and J.H. Potgieter, Journal of Raman Spectroscopy, 42 (2011) 123. [84] A.C. Ferrari and J. Robertson, Physical Review B, 63 (2001) 121405. [85] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [86] E. Tomasella, C. Meunier, and S. Mikhailov, Surface & Coatings Technology, 141 (2001) 286. [87] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [88] G.L. Dû, N. Celini, F. Bergaya, and F. Poncin-epaillard, Surface & Coatings Technology, 201 (2007) 5815. [89] N. Inagaki, K. Narushima, H. Hashimoto, and K. Tamura, Carbon, 45 (2007) 797. [90] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [91] H.S. Zhang, K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [92] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [93] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [94] M. Iwaki, Y. Suzuki, A. Nakao, and H. Watanabe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128 (1997) 208. [95] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [96] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [97] J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229. [98] A. Becker and K.J. Huttinger, Carbon, 36 (1998) 177. [99] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [100] A. Becher and K.J. Huttinger, Carbon, 36 (1998) 225.
摘要: This study investigates the effects of different ethylene/nitrogen ratio, deposition temperature, working pressure, and mass flow rate on the properties of carbon films prepared by thermal chemical vapor deposition. In addition, this study also considers the influences of different ethylene/nitrogen ratio on the characteristics of carbon coatings on optical fibers. The C2H4/(C2H4+N2) ratios, deposition temperatures, working pressures, mass flow rates, and deposition time were set to 60 ~ 100 %, 1013 ~ 1053 K, 23 ~ 67 kPa, 20 ~ 100 sccm, and 30 min, respectively. The thin film thickness, microstructure, surface roughness, surface property, electrical property, and low-temperature morphology of carbon films were investigated by alpha step, field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, four-points probe, and optical microscopy. The results indicate that the deposition rate increases as the C2H4/(C2H4+N2) ratio, deposition temperature, and working pressure increase, but the deposition rate increases as the mass flow rate decreases. The deposition rate is proportional to about second-order and third-order of partial pressure of ethylene. The ordered degree, nano-crystallite size (La and Lc), and sp2 carbon atoms decrease as the C2H4/(C2H4+N2) ratio increases. The results also show that the surface roughness decreases as the C2H4/(C2H4+N2) ratio increases from 60 to 80 %, whereas increases as the C2H4/(C2H4+N2) ratio from 80 to 100 %. Alternatively, the water contact angle shows an opposite trend with respect to the surface roughness. As the C2H4/(C2H4+N2) ratio increases, the electrical resistivity of carbon films increases. Finally, based on the low-temperature morphology of carbon coatings, it is good for producing hermetic optical fiber coatings with the carbon thin thickness exceeding 149 nm.
本論文主要是以熱化學氣相沉積法製備碳薄膜,探討不同乙烯/氮氣比例、沉積溫度、工作壓力及氣體流量對碳薄膜性質之影響。另外,也以不同乙烯/氮氣比例製作碳鍍層並探討其對碳密封鍍層光纖的影響。製程參數如下:C2H4/(C2H4+N2) 的比例為60至100 %,沉積溫度為1013至1053 K,工作壓力為23至67 kPa,氣體流量為20至100 sccm,而沉積時間為30分鐘。本實驗利用表面輪廓儀、場發式掃描電子顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角量測儀、四點探針儀和光學顯微鏡來觀察並量測碳薄膜的厚度、微觀結構、表面粗糙度、表面特性、電學性質與抗溫變能力。研究結果發現,隨著乙烯含量百分比、沉積溫度與工作壓力上升時,碳薄膜的沉積速率會隨之增加,但是當氣體流量下降時,其沉積速率會上升。沉積速率與乙烯分壓的關係為2至3次方之間。碳薄膜結構有序程度、平均晶粒大小 (La和Lc) 與碳薄膜中的sp2含量會隨著乙烯含量比例增加而下降。由研究結果得知表面粗糙度在乙烯含量比例60至80 %呈現下降的趨勢,接著在乙烯含量比例80至100 %呈現上升的趨勢;對水接觸角而言,其趨勢是與表面粗糙度相反。電阻率則是隨著乙烯含量比例增加而上升。由耐溫變結果可得知,碳薄膜厚度大於149 nm時,可通過溫變試驗,適合用來做為光纖的碳密封鍍層。
URI: http://hdl.handle.net/11455/10109
其他識別: U0005-0607201122335300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607201122335300
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.