Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10130
標題: 雙離子束濺鍍對鐵鉑/氧化鉭奈米雙層薄膜之結構及磁性質研究
Microstructure and magnetic properties of FePt/Ta-oxide thin film with ion-beam bombardment
作者: 陳瑩真
Chen, Ying-Chen
關鍵字: FePt
鐵鉑
Ordering parameter
序化度
出版社: 材料科學與工程學系所
引用: [1] 許仁華、孫安正,“奈米儲存發展與前景”,物理雙月刊卅卷二期(2008) [2] Excerpts from Coughlin Associates corporation (2010). [3] M. Yu. Liu, and D. J. Sellmyer, J. Appl. Phys., 87, 6965 (2000). [4] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., 36, 10 (2000). [5] F. T. Yuan, D. H. Wei, H. W. Chang, S. K. Chen, H. W. Huang, S. N. Hsiao, A.C. Sun, H. Y. Lee, and Y. D. Yao, J. Appl. Phys., 103, 07E115 (2008). [6] D. T. Margulies, M. E. Schabes, N. Supper. H. Do, A. Berger, A. Moser, P. M. Rice, P. Aenett, M. Madison, B. Lengsfield, H. Rosen, and Eric E. Fullerton, Appl. Phys. Lett., 85, 6200 (2004). [7] O. A. Ivanov, L. V. Solina, V. A. Demshina, L. M. Magat, and Fiz, Metal. Metaloved, 35, 92 (1973). [8] B. Zhang and W. A. Soffa, IEEE Trans. Magn., 26, 1388 (1990). [9] M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., 84, 4403 (1998). [10] T. Suzuki, N. Honda, and K. Ouchi, IEEE Trans. Magn., 35, 2748 (1999). [11] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys Lett.,85, 2571 (2004). [12] C. P. Luo, S. H. Liou, D.J. Sellmyer, J. Appl. Phys., 87, 6941 (2000). [13] P.C. Kuo, Y. D Yao, C. M. Kuo, and H. C. Wu, J. Appl. Phys., 87, 6146 (2000). [14] S.C. Chen, P.C. Kuo, An-Cheng Sun, C. T. Li and W. C. Hsu, Materials Science and Engineering, B88, 91 (2002). [15] Yingfan Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., 80, 3325 (2002). [16] J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys., 93, 16615 (2003). [17] A. C. Sun, P. C. Kuo, S.C. Chen, C. Y. Chou, H. L. Huang, and J. H. Hsu, J. Appl. Phys., 95, 7264 (2004). [18] Y. K. Takahashi, M. Ohnuma, and K. Hono, J. Appl. Phys., 93, 7580 (2003) [19] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J.-I. Akiyama, Appl. Phys. Lett., 80,2147 (2002). [20] Q. Yan, T. Kim, A. Purkayastha, P. G. Ganesan, M. Shima, and G. Ramanath, Adv. Mater. Weinheim, Ger. 17, 2233 (2005). [21] C. H. Lai, C. H. Yang, and C. C. Chiang, Appl. Phys. Lett., 83, 4550 (2003). [22] Yasushi Endo, Nobuaki Kikuchi, Osamu Kitakami, and Yutaka Shimada, J. Appl. Phys., 89, 7065 (2001). [23] C. H. Lai, Y. C. Wu, and C. C. Chiang, J. Appl. Phys.,97, 10H305 (2005). [24] 金重勳、李景明、張慶瑞, “磁性技術手冊”(2002) [25] Nicola A. Spaldin,”Magnetic materials”. [26] David Jiles, “Introduction to magnetism and magnetic materials” (1991). [27] 國立成功大學材料科學與工程所碩士論文,CoAg底層與外場對FePt磁性層結構及磁性質之影響,程彥嘉,民國 95 年。 [28] 國立成功大學材料科學與工程所碩士論文,FePt 合金粒子之製備與性質研究,林琬蓉,民國 96 年。 [29] 賴志煌,“硬碟機的運作原理” [30] 游信和、陳文照、曾春風,“材料科學導論” [31] 楊志信,“垂直磁紀錄原理”,台灣資訊儲存技術協會會刊 (2005) [32] 國立中興大學材料科學與工程所碩士論文,鐵鉑/氧化矽薄膜之微結構及磁性質研究,邱宜倫,民國 98 年。 [33] 國立中興大學材料科學與工程所碩士論文,氧含量對鈷鉑及鐵鉑薄膜之影響,吳宜靜,民國 99 年。 [34] C. Denis Mee and Eric D. Daniel, “Magnetic Recording Technology”,second edition (1995). [35] 國立台灣大學材料科學與工程所博士論文,低序化溫度 LI0 FePt 合金薄膜的製備及其應用於垂直磁記錄媒體之研究,孫安正,民國 94 年。 [36] T. Chen, IEEE trans. Magn., 17, 1181 (1981). [37] R Skomski, J. Phys.:Condens. Matter, 15, R841 (2003). [38] H. Okamoto, “Binary Alloy Phase Diagrams”,Vol 2, ASM International, 2 nd Edition (1992). [39] Hari Singh Nalwa ,“Magnetic Nanostructures” ( 2002). [40] A.C. Sun, Jen-Hwa Hsu, P.C. Kuo, H.L. Huang, J. Magn. Magn. Mater., 320, 3071 (2008). [41] B. C. Lim, J. S. Chen, J. F. Hu, P. W. Lwin, Y. F. Ding, K. M. Cher, and B. Liu, J. Appl. Phys., 105, 07A730 (2009). [42] J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, J. Appl. Phys., 105, 07B702 (2009). [43] F.Q. Wang, X.H. Li, J.X. Guo, D.F. Guo, L. Xu, J.W. Zhao, B.T. Liu, and X.Y. Zhang, Journal of Alloys and Compounds., 508, 512 (2010). [44] Chang Soo Kim, Jonathan J. Sapan, Stephanie Moyerman, Kangho Lee, Eric E. Fullerton, and Mark H. Kryder, IEEE Trans. Magn., 46, 2282 (2010). [45] J. J. Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology: principles, deposition, film modification, and synthesis”(1989). [46] 李正中,“薄膜光學與鍍膜技術”,第六版 (2009) [47] Kaufman H. R. and Robinson R. S., “Operation of Broad-beam Source” (1987). [48] 吳泰伯、許樹恩,“X 光繞射原理與材料結構分析”(1996) [49] 汪建民, “材料分析”(1998) [50] ARTHUR W. ADAMSON原著,陶雨台譯,“表面物理化學”(1990) [51] 義守大學電子工程所碩士論文, 摻雜量對氮化銦鎵/氮化鎵多層量子井光學與結構特性之研究,吳政鴻,民國97年。 [52] David B. Williams and C. Barry Carter,“Transmission Electron Microscopy”(1996). [53] M. H. Kryder, J.Appl. Phys., 57, 3913 (1985). [54] 國立台灣大學物理研究所碩士論文,自旋量子井對交換偏偶合的影響,莊程豪,民國92年。 [55] K. H. J. Buschow, “Concise Encyclopedia of magnetic and Superconducting materials.” [56] 汪島軍、馬仁宏、陳亙佑、蔡斯凱、林建智,“原子力顯微鏡專利地圖及分析”。 [57] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys.,95, 5 (2004). [58] W.M. Yang, Y.W. Liu, Q. Zhang, Y.X. Leng, H.F. Zhou, P. Yang, J.Y. Chen, N. Huang, Surface & Coatings Technology, 201, 8062 (2007). [59] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett., 91, 072502 (2007). [60] Y. Ding, D. H. Wei, and Y. D. Yao, J. Appl. Phys., 103, 07E145 (2008). [61] Rogers J.D., Sundaram V.S., Kleiman G.G., Castro, C.G.C., Douglas R.A., Peterlevitz A.C., J. Phys. F. 12, 2097 (1982). [62] John F.Moulder, William F. Stickle, Peter E. Sobol and Kenneth D. Bomben, “Handbook of X-ray Photolectron Spectroscopy”(1992). [63] Thomas III J.H., Hammer L.H.,J. Electrochem. Soc., 136, 2004 (1989). [64] Ho S.F., Contarini S., Rabalais J.W., J. Phys. Chem., 91,4779 (1987). [65] Y.H. Fang, P.C. Kuo, A.C. Sun, S.L. Hsu, S.C. Chen, Thin Solid Films, 517,5181 (2009). [66] Chen Chen, Osamu Kitakami, Satoshi Okamoto, and Yutaka Shimada, Appl. Phys. Lett., 76, 3218 (2000). [67] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, K. Fukamichi, Appl. Phys. Lett., 78, 1104 (2001). [68] W.M. Liao, S.K. Chen, F.T. Yuan, C.W. Hsu, S.N. Hsiao, W.C. Chang, J. Magn. Magn. Mater., 304,e255 (2006). [69] Y. H. Fang, P. C. Kuo, P. L. Lin, C. T. Kuo, G. P. Lin,and S. C. Chen, J. Appl.Phys., 103,07F514 (2008). [70] Ko-Wei Lin, Yi-Lun Chiu, An-Cheng Sun, Jen-Hwa Hsu, Johan van Lierop, and Takao Suzuki, Jpn. J. Appl. Phys., 48, 073002 (2009). [71] C. M. Kuo, P. C. Kuo, and H. C. Wu, J. Appl.Phys., 85 4886(1999). [72] Hao Zeng, Shouheng Sun, T. S. Vedantam, J.mP. Liu, Z.-R. Dai and Z.-L. Wang, Appl. Phys. Lett., 80, 2583 (2002). [73] An-Cheng Sun, Hsun-Feng Hsu, Yi-Jing Wu, Yi-Lun Chiu, Jen-Hwa Hsu,Philip W. T. Pong, Takao Suzuki, and Ko-Wei Lin, Jpn. J. Appl. Phys., 49, 123001(2010)
摘要: 本研究首先以超高真空磁控濺鍍系統製備鐵鉑(10 nm),第一部分以雙離子束濺鍍系統在鐵鉑上層鍍上不同氧含量之氧化鉭(10 nm,0~41% O2/Ar),接著再以超高真空磁控濺鍍之腔體內對試片進行退火處理。第二部分為探討退火溫度及頂層氧化物對於鐵鉑在磁性質及微結構方面之影響。 由電子顯微鏡可觀察到單純只有氧化鉭之未退火薄膜,當氧含量為0% (鉭)時有體心立方之鉭(a~3.28 A)金屬結晶,其餘不同氧含量之氧化鉭皆為非晶結構之連續膜,但當氧含量為41%時由於氧含量過多導致表面呈現波浪狀起伏。 初鍍膜之不同氧含量鐵鉑/氧化鉭(0~41% O2/Ar)方面,X光繞射及電子顯微鏡研究顯示:初鍍膜由非序化之面心立方鐵鉑相(a~3.81 A)組成主要由於鐵鉑互相混合所致,而氧含量為15%時其垂直矯頑磁力為62 Oe;不同氧含量之鐵鉑/氧化鉭晶粒大小約為2~14 nm。 在鐵鉑/氧化鉭(0~41% O2/Ar)方面,經550oC退火10分鐘後,結構皆轉變為序化之面心正方(L10) (a~3.8 A,c~3.7 A),氧含量為15%時擁有最高之序化度(S ~ 0.6),及最大垂直矯頑磁力(Hc⊥~ 4.2 kOe)且晶界之氧化鉭均勻將鐵鉑晶粒隔離,其晶粒大小約為9 nm,此結果可藉由化學分析電子能譜儀得知氧化鉭能擴散至鐵鉑層以分散鐵鉑晶粒。氧含量為超過21%時,隨著氧含量增加序化度漸減尤其當氧含量為41%時有面心立方相及面心正方相鐵鉑共存之結構,這可由X光繞射之(111)特徵峰得知。 經不同退火溫度研究顯示在鐵鉑/氧化鉭(15% O2/Ar)退火溫度為400oC 時,其結構仍為面心立方相,當退火溫度升為550oC才轉變為面心正方相(a~3.8 A,c~3.7 A)。由電子顯微鏡分析顯示,退火溫度為650oC時,晶粒成長並且晶粒與晶粒會相互結合其大小增加至約12 nm,這導致其序化度(S ~ 0.53)及矯頑磁力(Hc⊥~3.6 kOe)略為的降低,此結果也可由初始曲線得知其翻轉機制不同而得到證實。
In our research, we have shown that the structure and magnetic properties of FePt thin film. The co-sputtered FePt films were prepared by ultrahigh vacuum (UHV) magnetron sputtering system while the capping TaOx layer was prepared by using dual ion-beam deposition technique with mixture of O2/Ar gas that was varied from 0% to 41% O2/Ar. Samples were annealed in the UHV chamber under different heat treatment condition. Then, we did a series of analysis to investigate the effect of annealing temperature and top oxide on microstructure and magnetism in FePt thin films. The structures of as-deposited single layer TaOx was deposited without feeding oxygen, ultra small Ta grains (about 2 nm) with bcc structure were obtained. With the increasing oxygen content, the TaOx were amorphous and at the 41% O2/Ar it appeared wave-like patterns due to too much oxide. According to XRD, the structures of as-deposited FePt/TaOx (0% to 41% O2/Ar) consisted of fcc FePt (a ~ 3.81 A) phases that resulted from intermixing of Fe and Pt during deposition. The grain sizes ranged from 2 to 14 nm and the out-of-plane coercivity of the 15% O2/Ar was about 62 Oe. After annealed 550oC for 10 mins, the structures of different oxygen content FePt/TaOx exhibit ordered L10 FePt phases. The highest ordering parameter (S~0.6) occured at 15% O2/Ar, and had the maximum out-of-plane coercivity( Hc⊥~ 4.2 kOe). It was also well separated FePt grains, proved by TEM and ESCA which indicated Ta-oxide could diffuse effectively into FePt layer. When the oxygen content above 21%, the ordering parameters are reduced with increasing oxygen. Especially, at 41% O2/Ar had minimum ordering parameter and the fcc phase coexisted with fct phase based on XRD (111) peaks. In the part of different anneal temperature, FePt/TaOx 15% O2/Ar showed that phase transferred from fcc to fct structure at temperature greater than 400oC. The grains growth with increasing annealing temperature, the grains grew and combined together when the temperutare was 650oC that led to slightly reducing the magnetic properties (Hc⊥~3.6 kOe) and ordering parameter (S ~ 0.53).
URI: http://hdl.handle.net/11455/10130
其他識別: U0005-1006201111200000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1006201111200000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.