Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10138
標題: Hot-Wire Chemical Vapor Deposition of Si-Based Thin Films for Heterojunction Solar Cell Applications
熱燈絲化學氣相沉積矽基薄膜及其應用於異質接面太陽電池之研究
作者: 毛信元
Mao, Hsin-Yuan
關鍵字: hot-wire chemical vapor deposition (HWCVD)
熱燈絲化學氣相沉積
Si film
two step growth
SiC film
heterojunction solar cell (HJ solar cell)
矽薄膜
二階段成長法
碳化矽薄膜
異質接面太陽電池
出版社: 材料科學與工程學系所
引用: 1. A. Fahrenbruch and R.H. Bube, "Fundamentals of solar cells: photovoltaic solar energy conversion", Academic press, New York, p. 9 (1983) 2. W. Adams and R. Day, "The Action of Light on Selenium", Proc. R. Soc., vol. 25, pp. 113-117 (1876) 3. D. Chapin, C. Fuller, and G. Pearson, "A New Silicone pn Junction for Converting Solar Radiation into Electric Power", J. Appl. Phys., vol. 25, pp. 676-677 (1954) 4. P. Verlinden, R. Sinton, and R. Swanson, "High efficiency large area back contact concentrator solar cells with a multilevel interconnection", Int. J. Sustain. Energy, vol. 6, pp. 347-366 (1988) 5. D. Reynolds, G. Leies, L. Antes, and R. Marburger, "Photovoltaic effect in cadmium sulfide", Phys. Rev., vol. 96, pp. 533-534 (1954) 6. J.A. Bragagnolo, A.M. Barnett, J.E. Phillips, R.B. Hall, A. Rothwarf, and J.D. Meakin, "The design and fabrication of thin-film CdS/Cu2S cells of 9.15-percent conversion efficiency", IEEE Trans. Electron Devices, vol. 27, pp. 645-651 (1980) 7. R.S. Ohl, "Light-Sensitive Electric Device", United States Patent, No. 2402662, (1941) 8. E.F. Kingsbury and R.S. Ohl, "Photoelectric properties of ionically bombarded silicon", Bell Syst. Tech. J., vol. 31, pp. 802-815 (1952) 9. J. Haynos, J. Allison, R. Arndt, and A. Meulenberg. "The COMSAT nonreflective silicon solar cell: a second generation improved cell", Proceedings International Conference on Photovoltaic Power Generation, Hamburg, Germany, p. 487 (1974) 10. A. Blakers and M. Green, "20% efficiency silicon solar cells", Appl. Phys. Lett., vol. 48, pp. 215-217 (1986) 11. R.A. Sinton, K. Young, J.Y. Gan, and R.M. Swanson, "27.5-percent silicon concentrator solar cells", IEEE Electr. Device Lett., vol. 7, pp. 567-569 (1986) 12. J. Zhao, A. Wang, and M.A. Green, "24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates", Prog. Photovoltaics, vol. 7, pp. 471-474 (1999) 13. H. Sterling and R. Swann, "Chemical vapour deposition promoted by rf discharge", Solid State Electron., vol. 8, pp. 653-654 (1965) 14. R. Chittick, J. Alexander, and H. Sterling, "The preparation and properties of amorphous silicon", J. Electrochem. Soc. , vol. 116, pp. 77-81 (1969) 15. S. Veprek and V. Marecek, "The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport", Solid State Electron., vol. 11, pp. 683-684 (1968) 16. P. Le Comber and W. Spear, "Electronic transport in amorphous silicon films", Phys. Rev. Lett., vol. 25, pp. 509-511 (1970) 17. W. Spear and R. Loveland, "The temperature dependence f photoconductivity in a-Si", J. Non-Cryst. Solids, vol. 15, pp. 410-422 (1974) 18. P. LeComber and W. Spear, "Substitutional doping of amorphous silicon", Solid State Commun., vol. 17, pp. 1193 (1975) 19. W. Paul, A. Lewis, G. Connell, and T. Moustakas, "Doping, Schottky barrier and p---n junction formation in amorphous germanium and silicon by rf sputtering* 1", Solid State Commun., vol. 20, pp. 969-972 (1976) 20. S. Usui and M. Kikuchi, "Properties of heavily doped GD---Si with low resistivity", J. Non-Cryst. Solids, vol. 34, pp. 1-11 (1979) 21. A. Matsuda, S. Yamasaki, K. Nakagawa, H. Okushi, K. Tanaka, S. Iizima, M. Matsumura, and H. Yamamoto, "Electrical and Structural Properties of Phosphorous-Doped Glow-Discharge Si: F: H and Si: H Films", Jpn. J. Appl. Phys., vol. 19, pp. L305-L308 (1980) 22. A. Matsuda, "Formation kinetics and control of microcrystallite in [mu] c-Si: H from glow discharge plasma", J. Non-Cryst. Solids, vol. 59, pp. 767-774 (1983) 23. M. Faraji, S. Gokhale, S. Choudhari, M. Takwale, and S. Ghaisas, "High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications", Appl. Phys. Lett., vol. 60, pp. 3289-3291 (1992) 24. J.K. Rath, H. Meiling, and R.E.I. Schropp, "Purely intrinsic poly-silicon films for nip solar cells", Jpn. J. Appl. Phys., vol. 36, pp. 5436-5443 (1997) 25. R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, and C.R. Wronski, "Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry", Sol. Energ. Mat. Sol. C., vol. 78, pp. 143-180 (2003) 26. A. Gordijn, "Microcrystalline silicon for thin-film solar cells", Ph.D. dissertation, Utrecht University, Utrecht, Netherlands, p. 12, (2005) 27. R.E.I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology", Kluwer Academic Publishers, p. 5 (1998) 28. J. Meier, R. Fluckiger, H. Keppner, and A. Shah, "Complete microcrystalline p i n solar cell¡XCrystalline or amorphous cell behavior?", Appl. Phys. Lett., vol. 65, pp. 860-862 (1994) 29. P.A.T.T. van Veenendaal, "Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon: From Gas Molecule To Solar Cell", Ph.D. dissertation, Utrecht University, Utrecht, Netherlands, p. 13, (2002) 30. H. Wiesmann, A.K. Ghosh, T. McMahon, and M. Strongin, "a‐Si : H produced by high‐temperature thermal decomposition of silane", J. Appl. Phys., vol. 50, pp. 3752-3754 (1979) 31. H. Matsumura and H. Tachibana, "Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2", Appl. Phys. Lett., vol. 47, pp. 833-835 (1985) 32. A.H. Mahan, S.P. Ahrenkiel, R.E.I. Schropp, H. Li, and D.S. Ginley, "A comparison of grain nucleation and grain growth during crystallization of HWCVD and PECVD a-Si:H films", Thin Solid Films, vol. 516, pp. 529-532 (2008) 33. Y. Zhou, B. Zhou, J. Gu, M. Zhu, and F. Liu, "Comparison of growth mechanisms of silicon thin films prepared by HWCVD with PECVD", Thin Solid Films, vol. 516, pp. 564-567 (2008) 34. A. Masuda, A. Izumi, H. Umemoto, and H. Matsumura, "What is the difference between catalytic CVD and plasma-enhanced CVD? Gas-phase kinetics and film properties", Vacuum, vol. 66, pp. 293-297 (2002) 35. J.R. Doyle, D.A. Doughty, and A. Gallagher, "Silane dissociation products in deposition discharges", J. Appl. Phys., vol. 68, pp. 4375-4384 (1990) 36. B. Schröder and S. Bauer, "Some indications of different film forming radicals in a-Si:H deposition by the glow discharge and thermocatalytic CVD processes", J. Non-Cryst. Solids, vol. 266-269, pp. 115-119 (2000) 37. K. Ishibashi, M. Karasawa, G. Xu, N. Yokokawa, M. Ikemoto, A. Masuda, and H. Matsumura, "Development of Cat-CVD apparatus for 1-m-size large-area deposition", Thin Solid Films, vol. 430, pp. 58-62 (2003) 38. W. Fuhs, K. Niemann, and J. Stuke, "Heterojunctions of Amorphous Silicon and Silicon Single Crystals", AIP Conf. Proc., vol. 20, pp. 345-350 (1974) 39. Y. Hamakawa, H. Okamoto, and K. Okuda, "Photovoltaic device", United States Patent, No. 4496788, (1985) 40. K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano. "More than 16% solar cells with a new HIT(doped a-Si/nondoped a-Si/crystalline Si) structure", Proceedings of the 22nd Photovoltaic Specialists Conference, Las Vegas, USA, p. 887 (1991) 41. SANYO Electric Co. Ltd.,"http://panasonic.net/energy/solar/hit/", (2012) 42. M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)", Prog. Photovoltaics, vol. 19, pp. 84-92 (2011) 43. M. Tanaka, S. Okamoto, S. Tsuge, and S. Kiyama. "Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules", 3 rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, p. 955 (2003) 44. C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, "Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells", Sol. Energ. Mat. Sol. C., vol. 81, pp. 61-71 (2004) 45. Z. Iqbal, S. Veprek, A.P. Webb, and P. Capezzuto, "Raman scattering from small particle size polycrystalline silicon", Solid State Commun., vol. 37, pp. 993-996 (1981) 46. A. Langford, M. Fleet, B. Nelson, W. Lanford, and N. Maley, "Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon", Phys. Rev. B, vol. 45, pp. 13367-13377 (1992) 47. J. Rath, R. Schropp, and W. Beyer, "Hydrogen at compact sites in hot-wire chemical vapour deposited polycrystalline silicon films", J. Non-Cryst. Solids, vol. 266, pp. 190-194 (2000) 48. J. Doyle, R. Robertson, G. Lin, M. He, and A. Gallagher, "Production of high quality amorphous silicon films by evaporative silane surface decomposition", J. Appl. Phys., vol. 64, pp. 3215-3223 (1988) 49. A. Mahan, J. Carapella, B. Nelson, R. Crandall, and I. Balberg, "Deposition of device quality, low H content amorphous silicon", J. Appl. Phys., vol. 69, pp. 6728-6730 (1991) 50. H. Matsumura, "Catalytic Chemical Vapor Deposition (CTC-CVD) Method Producing High Quality Hydrogenated Amorphous Silicon", Jpn. J. Appl. Phys., vol. 25, pp. L949-L951 (1986) 51. H. Wiesmann, A. Ghosh, T. McMahon, and M. Strongin, "a Si: H produced by high temperature thermal decomposition of silane", J. Appl. Phys., vol. 50, pp. 3752-3754 (1979) 52. C. Godet, N. Layadi, and P. Roca i Cabarrocas, "Role of mobile hydrogen in the amorphous silicon recrystallization", Appl. Phys. Lett., vol. 66, pp. 3146-3148 (1995) 53. Y. Qin, H. Yan, F. Li, L. Qiao, Q. Liu, and D. He, "The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD", Appl. Surf. Sci., vol. 257, pp. 817-822 (2010) 54. A. Remolina, B. Monroy, M. Garcia-Sanchez, A. Ponce, M. Bizarro, J. Alonso, A. Ortiz, and G. Santana, "Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor", Nanotechnology, vol. 20, pp. 1-6 (2009) 55. M. Zhu, X. Guo, G. Chen, H. Han, M. He, and K. Sun, "Microstructures of microcrystalline silicon thin films prepared by hot wire chemical vapor deposition", Thin Solid Films, vol. 360, pp. 205-212 (2000) 56. R.E.I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells : modeling, materials, and device technology", Kluwer Academic, Boston, p. (1998) 57. P. Kumar, D. Bhusari, D. Grunsky, M. Kupich, and B. Schroeder, "p-doped [mu] c-Si: H window layers prepared by hot-wire CVD for amorphous solar cell application", Sol. Energ. Mat. Sol. C., vol. 90, pp. 3345-3355 (2006) 58. M. Green, "Thin-film solar cells: review of materials, technologies and commercial status", J. Mater. Sci. Mater. Electron., vol. 18, pp. 15-19 (2007) 59. A.H. Mahan, "Hot wire chemical vapor deposition of Si containing materials for solar cells", Sol. Energ. Mat. Sol. C., vol. 78, pp. 299-327 (2003) 60. Q. Wang, M.R. Page, E. Iwaniczko, Y.Q. Xu, L. Roybal, R. Bauer, B. To, H.C. Yuan, A. Duda, and Y.F. Yan. "Crystal silicon heterojunction solar cells by hot-wire CVD", Proceedings of the 33rd Photovoltaic Science and Engineering Conference, San Diego, USA, p. 1 (2008) 61. J.-H. Park, I.-H. Song, and M.-K. Han, "Low temperature short channel polycrystalline silicon thin film transistors with high reliability for flat panel display", Thin Solid Films, vol. 515, pp. 7402-7405 (2007) 62. M. Otobe and S. Oda, "The role of hydrogen radicals in nucleation and growth of nanocrystalline silicon", J. Non-Cryst. Solids, vol. 164-166, Part 2, pp. 993-996 (1993) 63. H. Matsumura, H. Umemoto, A. Izumi, and A. Masuda, "Recent progress of Cat-CVD research in Japan--bridging between the first and second Cat-CVD conferences", Thin Solid Films, vol. 430, pp. 7-14 (2003) 64. C. Niikura, R. Brenot, J. Guillet, and J.-E. Bourée, "Improved transport properties of microcrystalline silicon films grown by HWCVD with a variable hydrogen dilution process", Thin Solid Films, vol. 516, pp. 568-571 (2008) 65. T.I. Kamins, "Polycrystalline silicon for integrated circuits and displays", Kluwer Academic Publishers, Netherlands, p. 63 (1998) 66. R.H. Bube, "Photovoltaic materials", Imperial College Press, London, p. 57 (1998) 67. S.-M. Han, S.-J. Kim, J.-H. Park, S.-H. Choi, and M.-K. Han, "High quality nanocrystalline silicon thin film fabricated by inductively coupled plasma chemical vapor deposition at 350 °C", J. Non-Cryst. Solids, vol. 354, pp. 2268-2271 (2008) 68. J. Rath, F. Tichelaar, H. Meiling, and R.E.I. Schropp, "Hot-wire CVD poly-silicon films for thin film devices", Mater. Res. Soc. Symp. Proc., vol. 507, pp. 879-890 (1998) 69. K. Adhikary and S. Ray, "Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells", J. Non-Cryst. Solids, vol. 353, pp. 2289-2294 (2007) 70. Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, "Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells", J. Non-Cryst. Solids, vol. 352, pp. 1900-1903 (2006) 71. P. Kumar, M. Kupich, D. Grunsky, and B. Schroeder, "Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells", Thin Solid Films, vol. 501, pp. 260-263 (2006) 72. R.E.I. Schropp, "Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost", Thin Solid Films, vol. 403, pp. 17-25 (2002) 73. B.P. Nelson, E. Iwaniczko, A.H. Mahan, Q. Wang, Y. Xu, R.S. Crandall, and H.M. Branz, "High-deposition rate a-Si:H n-i-p solar cells grown by HWCVD", Thin Solid Films, vol. 395, pp. 292-297 (2001) 74. R.E.I. Schropp, "Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition", Thin Solid Films, vol. 451-452, pp. 455-465 (2004) 75. H. Matsumura, H. Umemoto, and A. Masuda, "Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon", J. Non-Cryst. Solids, vol. 338-340, pp. 19-26 (2004) 76. H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda, and H. Matsumura, "Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH4/H-2 system", J. Appl. Phys., vol. 91, pp. 1650-1656 (2002) 77. C. Tsai, G. Anderson, R. Thompson, and B. Wacker, "Control of silicon network structure in plasma deposition", J. Non-Cryst. Solids, vol. 114, pp. 151-153 (1989) 78. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas", Thin Solid Films, vol. 337, pp. 1-6 (1999) 79. P. Gogoi and P. Agarwal, "Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature", Sol. Energ. Mat. Sol. C., vol. 93, pp. 199-205 (2009) 80. D. Wang, Z. Yang, F. Li, and D. He, "The microstructure and optical properties of crystallized hydrogenated silicon films prepared by very high frequency glow discharge", Appl. Surf. Sci., vol. 257, pp. 8350-8354 (2011) 81. K. Bhattacharya and D. Das, "Effect of deposition temperature on the growth of nanocrystalline silicon network from helium diluted silane plasma", J. Phys. D Appl. Phys. , vol. 41, pp. 155420 (2008) 82. J. Knights, G. Lucovsky, and R. Nemanich, "Defects in plasma-deposited a-Si:H", J. Non-Cryst. Solids, vol. 32, pp. 393-403 (1979) 83. P. Kumar, D. Bhusari, D. Grunsky, M. Kupich, and B. Schroeder, "p-doped [mu]c-Si:H window layers prepared by hot-wire CVD for amorphous solar cell application", Solar Energy Materials and Solar Cells, vol. 90, pp. 3345-3355 (2006) 84. S. Klein, F. Finger, R. Carius, H. Wagner, and M. Stutzmann, "Intrinsic amorphous and microcrystalline silicon by hot-wire-deposition for thin film solar cell applications", Thin Solid Films, vol. 395, pp. 305-309 (2001) 85. X. Zhang, Y. Zhao, F. Zhu, C. Wei, C. Wu, Y. Gao, J. Sun, G. Hou, X. Geng, and S. Xiong, "A combinatorial analysis of deposition parameters and substrates on performance of [mu] c-Si:H thin films by VHF-PECVD", Appl. Surf. Sci., vol. 245, pp. 1-5 (2005) 86. J. Gu, M. Zhu, L. Wang, F. Liu, B. Zhou, K. Ding, and G. Li, "High quality microcrystalline Si films by hydrogen dilution profile", Thin Solid Films, vol. 515, pp. 452-455 (2006) 87. K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda, W. Futako, and I. Shimizu, "Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon", Appl. Phys. Lett., vol. 71, pp. 3403-3405 (1997) 88. H. Chen, M.H. Gullanar, and W.Z. Shen, "Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films", J. Cryst. Growth vol. 260, pp. 91-101 (2004) 89. D. Das and K. Bhattacharya, "Characterization of the Si:H network during transformation from amorphous to micro- and nanocrystalline structures", J. Appl. Phys., vol. 100, pp. 103701-8 (2006) 90. H.L. Hsiao, Y.Y. Shieh, R.S. Lee, R.Y. Wang, K.C. Wang, H.L. Hwang, and A.B. Yang, "Electrical and structural properties of low temperature boron- and phosphorus-doped polycrystalline silicon thin films prepared by ECR-CVD", Appl. Surf. Sci., vol. 142, pp. 400-406 (1999) 91. T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano. "High-efficiency a-Si/c-Si heterojunction solar cell", 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, p. 1219 (1994) 92. H. Yamamoto, Y. Takaba, Y. Komatsu, M.J. Yang, T. Hayakawa, M. Shimizu, and H. Takiguchi, "High-efficiency [mu] c-Si/c-Si heterojunction solar cells", Sol. Energ. Mat. Sol. C., vol. 74, pp. 525-531 (2002) 93. Q. Wang, M. Page, Y. Xu, E. Iwaniczko, E. Williams, and T. Wang, "Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells", Thin Solid Films, vol. 430, pp. 208-211 (2003) 94. Q. Zhang, M. Zhu, F. Liu, and J. Liu, "Properties of n-type [mu] c-Si: H films by Cat-CVD for c-Si heterojunction solar cells", Thin Solid Films, vol. 501, pp. 141-143 (2006) 95. J. Sritharathikhun, F. Jiang, S. Miyajima, A. Yamada, and M. Konagai, "Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells", Jpn. J. Appl. Phys., vol. 48, pp. 101603 (2009) 96. Q. Wang, "High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells", Philos. Mag., vol. 89, pp. 2587-2598 (2009) 97. A. Kanevce and W.K. Metzger, "The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells", J. Appl. Phys., vol. 105, pp. 094507 (2009) 98. C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, "Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition", J. Appl. Phys., vol. 96, pp. 3987-3997 (2004) 99. M. Park, C. Teng, V. Sakhrani, M. McLaurin, R. Kolbas, R. Sanwald, R. Nemanich, J. Hren, and J. Cuomo, "Optical characterization of wide band gap amorphous semiconductors (a-Si:C:H): Effect of hydrogen dilution", J. Appl. Phys., vol. 89, pp. 1130-1137 (2001) 100. Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, "Properties and structure of a SiC:H for high efficiency a Si solar cell", J. Appl. Phys., vol. 53, pp. 5273-5281 (1982) 101. T. Chen, Y. Huang, H. Wang, D. Yang, A. Dasgupta, R. Carius, and F. Finger, "Microcrystalline silicon carbide thin films grown by HWCVD at different filament temperatures and their application in nip microcrystalline silicon solar cells", Thin Solid Films, vol. 517, pp. 3513-3515 (2009) 102. Y. Huang, A. Dasgupta, A. Gordijn, F. Finger, and R. Carius, "Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in nip microcrystalline silicon solar cells", Appl. Phys. Lett., vol. 90, pp. 203502 (2007) 103. S. Klein, L. Houben, R. Carius, F. Finger, and W. Fischer, "Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD", J. Non-Cryst. Solids, vol. 352, pp. 1376-1379 (2006) 104. A. Dasgupta, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, and M. Luysberg, "Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique", Thin Solid Films, vol. 516, pp. 622-625 (2008) 105. M. Yu, M. Rusli, S. Yoon, Z. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui, "INTERDISCIPLINARY AND GENERAL PHYSICS (PACS 1-41, 43-47, 79, 81-84, 89-99)-Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method", J. Appl. Phys., vol. 87, pp. 8155-8158 (2000) 106. A. Brockhoff, W. van der Weg, and F. Habraken, "The effects of hot-wire atomic hydrogen on amorphous silicon", J. Appl. Phys., vol. 89, pp. 2993 (2001) 107. A. Heya, A. Masuda, and H. Matsumura, "Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten", Appl. Phys. Lett., vol. 74, pp. 2143-2145 (1999) 108. A. Brockhoff, W. van der Weg, and F. Habraken, "Hot-wire produced atomic hydrogen: effects during and after amorphous-silicon deposition", Thin Solid Films, vol. 395, pp. 87-91 (2001) 109. B. Pantchev, P. Danesh, E. Liarokapis, B. Schmidt, J. Schmidt, and D. Grambole, "Effect of post-hydrogenation on the structural properties of amorphous silicon network", Jpn. J. Appl. Phys., vol. 43, pp. 454-458 (2004) 110. R.E.I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells : modeling, materials, and device technology", Kluwer Academic, Boston, p. (1998) 111. D. Das and K. Bhattacharya, "Characterization of the Si : H network during transformation from amorphous to micro- and nanocrystalline structures", Journal of Applied Physics, vol. 100, pp. (2006)
摘要: 「熱燈絲化學氣相沉積法」是一種研製薄膜材料的半導體製程技術,其原理係利用真空系統,於真空腔體環境下對金屬絲(通常以鎢、鉭或銥等材料)施加電流而產生1500~2000度C的局部高溫,經由通入反應氣體與加熱之燈絲進行反應裂解(催化)後,於真空腔體中產生各式前驅物,並在基底表面發生化學反應進而沉積形成薄膜。相較於現行普及的電漿輔助化學氣相沉積法,熱燈絲化學氣相沉積法相對具有低製程溫度(低基板溫度)、高沉積速率、低設備成本、大面積鍍膜、高氣體使用效率、避免電漿轟擊以及易於控制薄膜結晶率等優點,因此「熱燈絲化學氣相沉積法」是一種極具發展潛力的半導體製程技術。 本論文首先彙整太陽能電池及矽薄膜材料研究的發展歷程,並針對「熱燈絲化學氣相沉積法」及「電漿輔助化學氣相沉積法」之優、缺點作比較分析,於研究方法部分,介紹本實驗室所建立的熱燈絲化學氣相沉積系統、周邊組成設備及分析技術,研究方向包含「本質矽薄膜製程參數之研究」、「以二階段成長法研製複晶矽薄膜」、「p型奈米結晶矽薄膜研製」及「p型奈米結晶碳化矽薄膜研製」等四部分,並將研究結果應用於異質接面太陽電池。各研究方向分別探討熱燈絲化學氣相沉積系統製程參數對成長本質矽薄膜材料之影響、探討以二階段成長法(高/低氫氣流量參數)之製程變數對薄膜特性所造成的影響、研製p型奈米結晶矽薄膜材料及p型奈米結晶碳化矽薄膜,經由優化之製程參數,應用於異質接面太陽電池之鈍化層及光窗層,成功實現異質接面太陽電池之光電轉換效率達14.09%。 綜合本論文研究成果,吾人成功開發以熱燈絲化學氣相沉積系統研製本質矽薄膜、p型奈米結晶矽薄膜、p型奈米結晶碳化矽薄膜以及二階段生長法等薄膜製程,證實了以熱燈絲化學氣相沉積法研製之矽薄膜應用於異質接面太陽電池製作之可行性,對於日後業界運用於太陽電池量產技術上是十分重要的指標。
Hot-wire chemical vapor deposition (HWCVD) is one of the semiconductor fabrication processes to grow thin film materials. The HWCVD system is composed of vacuum system, gas flow controls, and catalytic wires where Tungsten, Tantalum or Iridium are often used. In a typical HWCVD process, the temperature of wire can increase to 1500~2000 by increasing the DC current. The source gases are entered into the vacuum chamber and decomposed (or catalyzed) by the high temperature wires. The substrate is exposed to one or more volatile precursors which react or decompose on the substrate surface to produce the desired deposit. The dissertation introduces the solar cell research evolution and the lately study of Si film. It also overviews the mechanisms of hot-wire chemical vapor deposition (HWCVD) and plasma enhanced chemical vapor deposition (PECVD). The advantages and the disadvantages of these two CVD are presented and compared. The study in the dissertation is using the HWCVD system and depositing Si based films for photovoltaic applications. The results includes four subjects of “Growth and characterization of intrinsic Si film”, “Deposition and characterization of poly-Si thin films using a two-step growth method”, “Deposition and characterization of p-type nanocrystalline Si (p-nc-Si) films for photovoltaic applications” and “Deposition and characterization of p-type nanocrystalline Si (p-nc-SiC)films for photovoltaic applications”. The intrinsic Si film such as amorphous, microcrystalline and polycrystalline have grown by HWCVD. The influence of deposition parameters such as substrate temperature and hydrogen dilution ratio has been presentation. Based on the identification of hydrogen dilution, a two-step growth method with high/low hydrogen dilution ratios was studied. In the two-step growth process, a thin seed layer was first grown on the glass substrate under high hydrogen dilution ratio and then a thick over layer was subsequently deposited upon the seed layer at a lower hydrogen dilution ratio. The amorphous Si incubation layer could be suppressed greatly in the initial growth of poly-Si film with the two-step growth method. In the subsequent poly-Si film thickening, a lower hydrogen dilution ratio value of the reactant gases can be applied to enhance the deposition rate. The electrical properties were also enhanced. The effects of H2 on the characteristics of p-nc-Si and p-nc-SiC films were analyzed. The optimized parameters of p-nc-Si and p-nc-SiC films were applied as emitter layer in the Si HJ solar cells. The 12.5 % and 14.09 % of photovoltaic conversion efficiencies could be obtained, respectively. These are very encouraging results for the industrial fabrication of high efficiency heterojunction solar cells by using HWCVD technique.
URI: http://hdl.handle.net/11455/10138
其他識別: U0005-1106201200391000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1106201200391000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.