Please use this identifier to cite or link to this item:
標題: Effects of process parameters on the properties of carbon coatings for optical fibers prepared by plasma enhanced chemical vapor deposition
作者: 林宏謙
Lin, Hung-Chien
關鍵字: Optical Fiber
Amorphous Carbon
Plasma Enhanced Chemical Deposition
Process Parameters
出版社: 材料科學與工程學系所
引用: [1] K.C. Kao, G.A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. Inst. Elect. Eng. 113(7) (1966) pp. 1151-1158. [2] F.P. Kapron, D.B. Keck, R.D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10) (1970) pp. 423-425. [3] J.B. MacChesney, P.B. O''Connor, H.M. Presby, “A new technique for preparation of low-loss and graded-index optical fibers,” Proc. IEEE. 62(9) (1974) pp. 1280-1281. [4] M. Horiguchi, H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12(12) (1976) pp. 310-312. [5] T. Izawa, T. Miyashita, F. Hanawa: U.S. Patent 4062665, “Continuous optical fiber perform fabrication,” December 1977. [6] T. Miyashita, “Research for low loss single mode fiber,” Ph.D. dissertation, June 1979. [7] T. Miyashita, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4) (1979) pp. 106-108. [8] D.K. Mynbaev, L.L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New Jersey, 2001 [9] B. Chomycz, Fiber optic installer's field manual, McGraw-Hill, New York, 2000. [10] G. Keiser, Optical Fiber Communication, Second Edition, McGraw-Hill, New York, 1991. [11] C.K. Kao, Optical Fiber System: Technology, Design, and Applications, McGraw-Hill, New York, 1982. [12] A.H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, New York, 1983. [13] D.J. Sterling, Technician''s Guide to Fiber Optics, Third Edition, Thomson Delmar Learning, New York, 1993. [14] M. Tomozawa, K.M. Davis, “Water diffusion into silica glass: Structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-cryst. Solids 185(3) (1995) pp. 203-220. [15] M. Tomozawa, H. Li, K. M. Davis, “Water diffusion, oxygen vacancy annihilation and structural relaxation in silica glasses,” J. Non-cryst. Solids 179 (1994) pp. 162-169. [16] T.I. Suratwala , R.A. Steele , G.D. Wilke , J.H. Campbell , K. Takeuchi, “Effects of OH content, water vapor pressure, and temperature on sub-critical crack growth in phosphate glass,” J. Non-cryst. Solids 263&264 (2000) pp. 213-227. [17] Y.K. Lee, M. Tomozawa, “Effect of water content in phosphate glasses on slow crack growth rate,” J. Non-cryst. Solids 248 (1999) pp. 203-210. [18] A. Iino, M. Kuwabara, K. Kokura, “Mechanisms of Hydrogen-Induced Losses in Silica-Based Optical Fibers,” J. Lightwave Technol. 8(11) (1990) pp. 1675-1679. [19] C.R. Kurkjian, J.T. Krause, M.J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9) (1989) pp. 1360-1370. [20] M.J. Matthewson, “Optical fiber mechanical testing techniques,” SPIE Critical Review Series, CR50 (1993) pp. 32-59. [21] K.E. Lu, G.S. Glaesemann, R.V. VanDewoestine, G. Kar, “Recent developments in hermetically coated optical fiber,” J. Lightwave Technol. 6(2) (1988) pp. 240-244. [22] N. Yoshizawa, H. Tada, Y. Katsuyama, “Strength improvement and fusion splicing for carbon-coated opticalfiber,” J. Lightwave Technol. 9(4) (1991) pp. 417-421. [23] D.R. Biswas, “Optical fiber coatings for biomedical applications,” Opt. Eng. 31(7) (1992) pp. 1400-1403. [24] D.L. Griscom, K.M. Golant, A.L. Tomashuk, D.V. Pavlov, Yu.A. Tarabrin, “γ-radiation resistance of aluminum-coated all-silica optical fibers fabricated using different types of silica in the core,” Appl. Phys. Lett. 69(3) (1996) pp. 322-324. [25] J.P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston, 1993. [26] T. Nozawa, D. Tanaka, A. Wada, and R. Yamauchi, “Novel Metal-coated Solderable Optical Fibers,” Tech. Dig. Optical Fiber Commun. Conf., Paper ThF3, 1992. [27] H.S. Seo, U.C. Paek, K. Oh, C.R. Kurkjian, “Melt Coating of Tin on Silica Optical Fiber,” J. Lightwave Technol. 16(12) (1998) pp. 2355-2364. [28] S.M. Chen, “Electroplated Hermetic Fiber,” 48th Electronic Components and Tech. Conf., Seattle WA, U.S.A., May 25, 1998, pp. 418-420. [29] S.T. Shiue, P.T. Lien, J.L. He, “Effect of coating thickness on thermal stresses in tungsten-coated optical fibers,” J. Appl. Phys. 87(8) (2000) pp. 3759-3762. [30] S.T. Shiue, Y.S. Lin, “Thermal stresses in metal-coated optical fibers,” J. Appl. Phys. 83(11) (1998) pp. 5719-5723 [31] R.S. Chu, S.T. Shiue, T.J. Yang, T.C. Wu, H.Y. Lin, “Effect of coating thickness and roughness on water-repellency and thermally induced voids/cracks in copper-coated optical fibers prepared by electroless plating method,” J. Chin. Inst. Eng. 30(3) (2007) pp. 503-510. [32] S.T. Shiue, C.H. Yang, R.S. Chu, T.J. Yang, “Effect of the coating thickness and roughness on the mechanical strength and thermally induced stress voids in nickel-coated optical fibers prepared by electroless plating method,” Thin Solid Films 485(1-2) (2005) pp.169-175. [33] S.T. Shiue, L.Y. Pen, H.H. Hsiao, “Design of hermetically metal-coated optical fibers to simultaneously minimize thermally and hydrostatic pressure induced stresses,” Mater. Chem. Phys. 78(2) (2003) pp. 518-524. [34] D. Liang, B. Culshaw, “Fiber optic silicon impact for application to smart skins,” Electron. Lett. 29(6) (1993) pp. 529-530. [35] Kevin H. Alt, Allen J. Lockyer, Christopher A. Martin, Jayanth N. Kudva, “Application for smart skin technologies to the development of a conformal antenna installation in the vertical tail of a military aircraft,” Proceedings of SPIE: Smart structures and Materials 2448 (1995) pp. 42-52. [36] P.J. Lemaire, K.S. Kranz, K.L. Walker, R.G. Huff, F.C. Dimarcello, “Hydrogen permeation in optical fibres with hermetic carbon coatings,” Electron. Lett. 24(21) (1988) pp. 1323-1324. [37] N. Yoshizawa, Y. Katsuyama, “High-strength carbon-coated optical fibre,” Electron. Lett. 25(21) (1989) pp. 1429-1431. [38] Y. Katsuyama, N. Yoshizawa, T. Yashiro, “Field evaluation result on hermetically coated optical fiber cables for practical application,” J. Lightwave Technol. 9(9) (1991) pp. 1041-1046. [39] G.R. Fox, D. Damjanovic, “Electrical characterization of sputter-deposited ZnO coatings on optical fibers,” Sens. Actuator A-Phys. 63(2) (1997) pp. 153-160. [40] S.T. Shiue, W.H. Lee, “Thermal stresses in carbon-coated optical fibers at low temperature,” J. Mater. Res. 12(9) (1997) pp. 2493-2498. [41] S.T. Shiue, J.L. He, L.Y. Pan, S.T. Huang, “Thermally induced stress voids in hermetically carbon-coated optical fibers with different coating thickness,” Thin Solid Films 406(1-2) (2002) pp. 210-214. [42] S.T. Shiue, H.H. Hsiao, T.Y. Shen, H.C. Lin, K.M. Lin, “Mechanical strength and thermally induced stress voids of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method with different hydrogen/methane ratio,” Thin Solid Films 483(1-2) (2005) pp. 140-146. [43] C.A. Taylor, W.K.S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings,” Surf. Coat. Technol. 168(1) (2003) pp. 1-11. [44] K.H. Kwok, W.K.S. Chiu, “Open-air carbon coatings on fused quartz by laser-induced chemical vapor deposition,” Carbon 41(4) (2003) pp. 673-680. [45] C.A. Taylor, M.F. Wayne, W.K.S. Chiu, “Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation,” Thin Solid Films 429(1-2) (2003) pp.190-200. [46] A. Grill, “Diamond-like carbon: state of the art,” Diam. Relat. Mater. 8(2-5) (1999) pp. 428-434. [47] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. R-Rep. 37(4-6) (2002) pp.129-281. [48] J. Mcmurry, Organic Chemistry, 6th ed. Brooks Cole, CA, 2004. [49] W. Jacob, W. Möller, “On the structure of thin hydrocarbon films,” Appl. Phys. Lett. 63(13) (1993) pp. 1771-1773. [50] C.W. Chen, J. Robertson, “Nature of disorder and localization in amorphous carbon,” J. Non-Cryst. Solids 227&230, Part 1 (1998) pp. 602-606. [51] J. Robertson, “Gap states in diamond-like amorphous carbon,” Philos. Mag. B 76(3) (1997) pp. 335-350. [52] J. Robertson, “Hard amorphous (diamond-like) carbons,” Prog. Solid State Chem. 21(4) (1991) pp. 199-333. [53] J. Robertson, E.P. O'Reilly, “Electronic and atomic structure of amorphous carbon,” Phys. Rev., B 35(6) (1987) pp. 2946-2957. [54] J. Robertson, “Structure models of a-C and a-C:H,” Diam. Relat. Mater. 4(4) (1995) pp. 297-301. [55] J. Robertson, “Amorphous carbon,” Adv. Phys. 35(4) (1986) pp. 317-374. [56] Rusli, J. Robertson, G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5) (1996) pp. 2998-3003. [57] C. De Martino, F. Demichelis, A. Tagliaferro “Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis,” Diam. Relat. Mater. 4(10) (1995) pp. 1210-1215. [58] E. Tomasella, C. Meunier, S. Mikhailov, “a-C:H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels,” Surf. Coat. Technol. 141(2-3) (2001) pp. 286-296. [59] N.K. Cuong, M. Tahara, N. Yamauchi, T. Sone, “Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition,” Surf. Coat. Technol. 174-175 (2003) pp. 1024-1028. [60] S.R. Jian, T.H. Fang, D.S. Chuu, “Nanoindentation investigation of amorphous hydrogenated carbon thin films deposited by ECR-MPCVD,” J. Non-Cryst. Solids 333(3) (2004) pp. 291-295. [61] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, I. Lin, “Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane,” Diam. Relat. Mater. 13(4-8) (2004) pp. 671-678. [62] G. Fanchini, A. Tagliaferro, B. Popescu, E.A. Davis, “Paramagnetic properties and hydrogen-related structural relaxation effects in magnetron-sputtered a-C:H thin films,” J. Non-Cryst. Solids 299-302 (2002) pp. 846-851. [63] N.D. Baydoğan, “Evaluation of optical properties of the amorphous carbon film on fused silica,” Mater. Sci. Eng., B 107(1) (2004) pp. 70-77. [64] M.J. Paterson, “An investigation of the role of hydrogen in ion beam deposited a-C:H,” Diam. Relat. Mater. 7(6) (1998) pp. 908-915. [65] M. Weiler, S. Sattel, T. Giessen, K. Jung, H. Ehrhardt, “Preparation and properties of highly tetrahedral hydrogenated amorphous carbon,” Phys. Rev. B 53(3) (1996) pp. 1594-1608. [66] A. Hu, Q.B. Lu, W.W. Duley, M. Rybachuk, “Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition,” J. Chem. Phys. 126(15) (2007) p. 154705. [67] F. Piazza, O. Resto, G. Morell, “Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth,” J. Appl. Phys. 102(1) (2007) p. 013301. [68] K.B.K. Teo, S.E. Rodil, J.T.H. Tsai, A.C. Ferrari, J. Robertson, W.I. Milne, “Effect of graphitic inclusions on the optical gap of tetrahedral amorphous carbon films,” J. Appl. Phys. 89(7) (2001) pp. 3706-3710. [69] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, X. Shi, “Properties and structures of diamond-like carbon film deposited using He, Ne, Ar/methane mixture by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 87(11) (2000) pp. 8122-8131. [70] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire Jr, “Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure,” J. Non-Cryst. Solids 338-340 (2004) pp. 503-508. [71] G. Capote, F.L. Freire, L.G. Jacobsohn, G. Mariotto, “Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: effect of the substrate temperature,” Diam. Relat. Mater. 13(4-8) (2004) pp. 1454-1458. [72] H. Tahara, K.I. Minami, A. Murai, T. Yasui, T. Yoshikawa,” Diagnostic experiment and kinetic model analysis of microwave CH4/H2 plasmas for deposition of diamondlike carbon films,” Jpn. J. Appl. Phys. 34 (1995) pp. 1972-1979. [73] A.H. Lettington, C. Smith, “Optical properties and applications of diamond-like carbon coatings,” Diam. Relat. Mater. 1(7) (1992) pp. 805-809. [74] Y.J. Baik, J.K. Lee, W.S. Lee, K.Y. Eun, “Large area deposition of thick diamond film by direct-current PACVD,” Thin Solid Films 341(1-2) (1999) pp. 202-206. [75] A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE Press, New York, 1994, pp. 35-39 [76] H. Inaba, Y. Kokaku, M. Terakado, H. Kataoka, “Development of CH4-radio-frequency-plasma-enhanced chemical vapor deposition method with a positively self-biased electrode for diamond-like carbon film,” Jpn. J. Appl. Phys. 36(5A) (1997) pp. 2817-2821. [77] H.R. Koenig, L.I. Meissel, “Application of RF discharge to sputtering,” IBM J. Res. Develop. 14 (1970) pp. 168-171. [78] T. Heitz, B. Drévillon, C. Godet, J.E. Bourée, “Quantitative study of C-H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry,” Phys. Rev. B 58(20) (1998) pp. 13957-13973. [79] A. Majumdar, J. Schäfer, P. Mishra, D. Ghose, J. Meichsber, R. Hippler, “Chemical composition and bond structure of carbon-nitride films deposited by CH4/N2 dielectric barrier discharge,” Surf. Coat. Technol. 201(14) (2007) pp. 6437-6444. [80] A. Ermolieff, A. Chabli, F. Pierre, G. Rolland, D. Rouchon, C. Vannuffel, C. Vergnaud, J. Baylet, M.N. Séméria, “XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization,” Surf. Interface Anal. 31(3) (2001) pp. 185-190. [81] N. Inagaki, K. Narushima, H. Hashimoto, K. Tamura, “Implantation of amino functionality into amorphous carbon sheet surfaces by NH3 plasma,” Carbon 45(4) (2007) pp. 797-804. [82] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, “Direct evaluation of the sp3 content in diamond-like-carbon films by XPS,” Appl. Surf. Sci. 136(1-2) (1998) pp. 105-110. [83] J. Tauc, R. Grigorovic, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2) (1966) pp. 627-637. [84] A. Foulain, “Annealing effects on optical and photoluminescence properties of a-C:H films,” J. Phys. D: Appl. Phys. 36(4) (2003) pp. 394-398. [85] J.D. Kim, K.H. Lee, K.Y. Kim, H. Sugimura, O. Takai, Y. Wu, Y. Inoue, “Characteristics and high water-repellency of a-C:H films deposited by r.f. PECVD,” Surf. Coat. Technol. 162(2-3) (2003) pp. 135-139. [86] M.J. Kushner, “A phenomenological model for surface deposition kinetics during plasma and sputter deposition of amorphous hydrogenated silicon,” J. Appl. Phys. 62(12) (1987) pp. 4763-4772. [87] J. Ristein, R.T. Stief, L. Ley, W. Beyer, “A comparative analysis of a-C:H by infrared spectroscopy and mass selected thermal effusion,” J. Appl. Phys. 84(7) (1998) 3836-3847. [88] A.C. Ferrari, J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20) (2000) pp. 14095-14107. [89] H. Nakazawa, T. Mikami, Y. Enta, M. Suemitsu, M. Mashita, “Structure, Chemical Bonding and These Thermal Stabilities of Diamond-Like Carbon (DLC) Films by RF Magnetron Sputtering,” Japan. J. Appl. Phys. 42(6B) (2003) pp. L676-L679. [90] E. Tomasella, L. Thomas, M. Dubois, C. Meunier, “Structural and mechanical properties of a-C:H thin films grown by RF-PECVD,” Diam. Relat. Mater. 13(9) (2004) pp. 1618-1624. [91] X. Jiang, K. Reichelt, B. Stritzker, “The hardness and Young''s modulus of amorphous hydrogenated carbon and silicon films measured with an ultralow load indenter,” J. Appl. Phys. 66(12) (1989) pp. 5805-5808. [92] A.A.R. Elshabini, F.D. Barlow III, Thin Film Technology Handbook, McGraw-Hill, New York, 1997, Ch. 7. [93] R.N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8) (1936) pp. 988-994. [94] X.B. Yan, T. Xu, S.S. Yue, H.W. Liu, Q.J. Xue, S.R. Yang, “Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor,” Diam. Relate. Mater. 14(8) (2005) pp. 1342-1347. [95] E.F. Hare, E.G. Shafrin, W.A. Zisman, “Properties of Films of Adsorbed Fluorinated Acids,” J. Phys. Chem. 58(3) (1954) pp. 236-239. [96] F. Tuinstra, J.L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3) (1970) pp. 1126-1130. [97] J.W.A.M. Gielen, P.R.M. Kleuskens, M.C.M. van de Sanden, “Optical and mechanical properties of plasma-beam-deposited amorphous hydrogenated carbon,” J. Appl. Phys. 80(10) (1996) pp. 5986-5995. [98] I. Solomon, “Amorphous silicon-carbon alloys: a promising but complex and very diversified series of materials,” Appl. Surf. Sci. 184(1-4) (2001) pp. 3-7. [99] M.A. Tamor, W.C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6) (1994) pp. 3823-3830. [100] D.L. Smith, Thin-film Deposition: Principles and Practices, McGraw-Hill, New York, 1995. [101] K.K. Hirakuri, T. Minorikawa, G. Friedbacher, M. Gradderbauer, “Thin film characterization of diamond-like carbon films prepared by r.f. plasma chemical vapor deposition,” Thin Solid Films 302(1-2) (1998) pp. 5-11 (1998). [102] Y. Hayashi, K. Hagimoto, H. Ebisu, M.K. Kalaga, T. Soga, “Effect of Radio Frequency Power on the Properties of Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition,” Japan. J. Appl. Phys. 39(7A) (2000) pp. 4088-4093. [103] Y.P. Zhao, Jason T. Drotar, G.C. Wang, T.M. Lu, “Morphology Transition during Low-Pressure Chemical Vapor Deposition,” Phys. Rev. Lett. 87 (2001) p. 136102-1. [104] B. Chapman, Glow Discharge Processes, 1st ed. (John Wiley & Sons, New York, 1980). [105] D.S. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, 1st ed., Chapman and Hall, New York, 1991, p.35. [106] K. Chakrabarti, M. Basu, S. Chaudhuri, A.K. Pal, “Mechanical, electrical and optical properties of a-C:H:N films deposited by plasma CVD technique,” Vacuum 53(3-4) (1999) pp. 405-413. [107] O.S. Panwar, B. Deb, B.S. Satyanarayana, Khan. Mohd. Alim, R. Bhattacharyya, and A.K. Pal, “Characterization of as grown and nitrogen incorporated tetrahedral amorphous carbon films deposited by pulsed unfiltered cathodic vacuum arc process,” Thin Solid Films 472(1-2) (2005) pp. 180-188. [108] E. Smidt, K.U. Eckhardt, P. Lechner, H.R. Schulten, P. Leinweber, “Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry,” Biodegradation 16(1) (2005) pp. 67-79. [109] S.S. Chen, S.T. Shiue, W.C. Tang, and H.Y. Lin, “Effects of annealing on the properties of hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method,” Opt. Eng. 46(3) (2007) p. 035008. [110] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, “Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films,” Diam. Relate. Mater. 11(3-6) (2002) pp. 845-850. [111] Y. Kawashima, G. Katagiri, “Fundamentals, overtones, and combinations in the Raman spectrum of graphite,” Phys. Rev. B 52(14) (1995) pp. 10053-10059. [112] C. Thomsen, S. Reich, “Double resonant raman scattering in graphite,” Phys. Rev. Lett. 85(24) (2000) pp. 5214-5217. [113] L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, “Influence of the atomic structure on the raman spectra of graphite edges,” Phys. Rev. Lett. 93(24) (2004) p. 247401. [114] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, W. Moller, “Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study,” Phys. Rev. B 73(12) (2006) p. 125427. [115] S.C. Ray, G. Fanchini, A. Tagliaferro, B. Bose, D. Dasgupta, “Amorphous carbon films prepared by the “dip” technique: Deposition and film characterization,” J. Appl. Phys. 94(2) (2003) pp. 870-878. [116] M. Lejeune, O. Durand-Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, M. Benlahsen “Optical investigations and Raman scattering characterization of carbon bonding in hard amorphous hydrogenated carbon films,” Thin Solid Films 389(1-2) (2001) pp. 233-238. [117] I.N. Mihailescu, E. Gyorgy, R. Alexandrescu, A. Luches, A. Perrone, C. Ghica, J. Werckmann, I. Cojocaru, V. Chumash, “Optical studies of carbon nitride thin films deposited by reactive pulsed laser ablation of a graphite target in low pressure ammonia,” Thin Solid Films 323(1-2) (1998) pp. 72-78. [118] T. Szörényi, C. Fuchs, E. Fogarassy, J. Hommet, F. Le Normand, “Chemical analysis of pulsed laser deposited a-CNx films by comparative infrared and X-ray photoelectron spectroscopies,” Surf. Coat. Technol. 125(1-3) (2000) pp. 308-312. [119] S.T. Shiue, H.C. Lin, T.Y. Shen, H. Ouyang, “Residual stress measurement in carbon coatings of optical fibers from the fiber bending curvature and coating thickness difference,” Appl. Phys. Lett. 86(25) (2005) p. 251910. [120] Y.S. Han, Y.K. Kim, JY. Lee, “Effect of argon and oxygen addition to the CH4-H2 feed gas on diamond synthesis by microwave plasma enhanced chemical vapor deposition,” Thin Solid Films 310(1-2) (1997) pp. 39-46. [121] C. Riccardi, R. Barni, E. Sindoni, M. Fontanesi, P. Tosi “Gaseous precursors of diamond-like composition of CH4/Ar plasmas,” Vacuum 61(2-4) (2001) pp. 211-215. [122] G. Le Dû, N. Celini, F. Bergaya, F. Poncin-Epaillard, “RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics,” Surf. Coat. Technol. 201(12) (2007) pp. 5815-5821. [123] A. Grigonis, Ž. Rutkūnienė, V. Kopustinskas, G.J. Babonas, A. Rėza, “Investigation of optical properties of a-C:H films deposited from acetylene using direct ion beam deposition method,” Vacuum 78(2-4) (2005) pp. 593-597
摘要: 本論文主要是研究不同製程條件對以電漿輔助化學氣相沉積法製備光纖碳鍍層之效應。製程條件分別選定為不同氫氣/甲烷比、射頻功率、基材溫度、氬氣/甲烷比與氫氣/乙炔比。 藉由氬氣或氫氣稀釋甲烷會使沉積出來的碳鍍層分別趨向類石墨化碳和類高分子碳薄膜。製備具有最佳密封特性碳鍍層的氬氣/甲烷比和氫氣/甲烷比分別為4和2~4。 藉由氫氣稀釋H/C比例較甲烷(H/C=4)低的乙炔(H/C=1)來製備碳鍍層時,氫氣對於離化能相對較低的乙炔可有效減少碳粉末在製程中生成並有輔助形成非晶質碳薄膜的作用。而以大量氫氣稀釋甲烷或乙炔時,氫氣在碳薄膜沉積過程中會阻礙石墨化結構的生成。製備具有最佳密封碳鍍層的氫氣/乙炔比為8。 此外,藉改變射頻功率或基材溫度製備碳鍍層時,碳鍍層結構中sp2鍵結碳皆會大量生成。但是,相對於改變射頻功率的作用,改變基材溫度所製備的碳鍍層可擁有更低氫含量的鍍層結構,進而使得碳鍍層擁有更好的抗水性。製備具有最佳密封碳鍍層的射頻功率與基材溫度分別為200 W和300oC。 綜合以上所述,當藉改變製程條件來調變碳鍍膜結構以獲得最佳密封特性的碳鍍層光纖時,碳鍍層的結構組成可有兩種選擇:(1)結構中sp2鍵結形式的碳碳鍵數量必須要多但碳氫鍵數量必須要少;(2)結構中sp3鍵結形式的碳氫鍵數量必須要多,且以sp3-CH3鍵結對密封特性的貢獻為最佳。
The effects of process parameters on the properties of carbon coating for optical fibers prepared by plasma enhanced chemical vapor deposition are investigated. The process parameters, such as hydrogen/methane ratios, radio frequency powers, substrate temperatures, argon/methane ratios, and hydrogen/acetylene ratios, are considered. The structure of carbon coatings prepared by increasing argon/methane ratios becomes the graphite-like, while the structure of carbon coatings prepared by increasing hydrogen/methane ratios becomes the polymer-like. The best for the production of a hermetical optical fiber coating is obtained as the argon/methane and hydrogen/methane ratios are 4 and between 2 and 4, respectively. Alternatively, the H/C ratio of acetylene molecules equaling to 1 is smaller than that of methane molecules equaling to 4. When the carbon coatings are prepared by the decompositions of acetylene with the hydrogen dilution, the hydrogen effect reduces the production of the carbon powders during deposition and assists the formation of amorphous carbon coatings. If the carbon coatings are deposited by the methane or acetylene with high hydrogen dilutions, hydrogen effect retards the growth of graphitic structure. The best for the production of a hermetical optical fiber coating is obtained as hydrogen/acetylene ratio is 8. Besides, when the carbon coatings are prepared by changing the radio frequency powers or the substrate temperatures, it is found that the large number of sp2 carbon-carbon bonds is appeared in the coating structure. The coating structure with low hydrogen contents prepared by changing substrate temperatures is more conspicuous than that prepared by changing the radio frequency powers. The coating structure with low hydrogen contents is good for the water-repellency. The best for the production of a hermetical optical fiber coating is obtained as the radio frequency power and the substrate temperature are 200W and 300oC, respectively. If the hermetic property of carbon coatings is demanded, two kinds of bonding structures can be achieved and they are described as follows: (1) the sp2 type carbon bonding, but not bonded with hydrogen atoms; (2) a large number of sp3 type bonding, especially the existence of sp3-CH3 bonds.
其他識別: U0005-0707200622191700
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.