Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10144
標題: 鋁在氬銲脈衝電流之氣孔性研究
The study of pulsed current GTA welding on porosity property of aluminum
作者: Chen, Chun-Jen
陳純仁
關鍵字: Gas Tungsten Arc Welding
氬銲
Al allloy
porosity
pulse
鋁合金
氣孔
脈衝
出版社: 材料科學與工程學系所
引用: 1.J. W. Knight, Welding kaiser aluminum, Kaiser Aluminum & Chemical Sales, California, pp. 211-823, 1967. 2.台灣銲接協會,銲接檢驗師資格檢定基礎課程,第89-103頁,2005。 3.T. Senthil Kumar, V. Balasubramanian, S. Babu, and M. Y. Sanavullah, “Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA6061 aluminum alloy,” Metals and Materials International, vol. 13, no. 4, pp. 345-351, 2007. 4.D. W. Becker, C. M. Adams, “The role of pulsed GTA welding variables in solidification and grain refinement,” Welding Journal, pp. 143s-152s, 1979. 5.K. H. Tseng, C. P. Chou, “The effect of pulsed GTA welding on residual stress of a stainless steel weldment,” Journal of Materials Processing Technology, vol. 123, pp. 346-353, 2002. 6.V. Balasubramanian, V.Ravisankar, G. Madhusudhan Reddy, “Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminum alloy,” Materials Science and Engineering A, vol.459, pp. 19-34, 2007. 7.Y. Sharir, J. Delleg, A. Grill, “Effect of arc vibration and current pulses on microstructure and mechanical properties of Tig tantalum weld,” Metals Technology, pp. 190-196, 1978. 8.T. Senthil Kumar, V. Balasubramanian, M. Y. Sanavullah, “Influence of pulsed current tungsten inert gas welding parameter on the tensile properties of AA6061 aluminum alloy,” Materials and Design, vol. 28, pp. 2080-2092, 2007. 9.A. A. Omar, C. D. Lundin, “Pulsed GTA arc:A study of process variables,” Welding Journal, pp. 97-105, 1979. 10.R. A. Woods, “Porosity and hydrogen absorption in aluminum weld,” Welding Journal, pp. 97s-108s, 1974. 11.C. Menzemer, P. C. Lam, T. S. Wittel, “An investigation of fusion zone microstructure of welded aluminum alloy joint,” Materials Letter, vol. 41, pp. 192-197, 1999. 12.J. E. Hatch, Aluminum properties and physical metallurgy, American Society for Metals, 3rd ed. pp. 18-28, 1984. 13.P. Praveen, P. K. D. V. Yarlagadda, “Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding,” Journal of Materials Processing Technology, pp. 1106-1112, 2005. 14.姜志華,鋁合金電弧銲接及硬銲應用技術,科學圖書大庫,第1-61頁,1994。 15.王大倫譯, Aluminiumwerkstoffe Prof Strippelnn,鋁材料之熔接。 16.W. Spraragen and B. A. Lengrel, “Physical of the arc and the transfer of metal in arc welding,” Welding Journal, vol. 21, pp. 2s-42s, 1942. 17.安藤弘平、長谷川光雄,焊接電弧現象,第六版,產報株式會社,日本,第55-62頁,1978。 18.M. Katoh and H. K. Kerr, “Investigation of heat-affected zone cracking of GTA weld of Al-Mg-Si alloys using the varestraint test,” Welding Journal, pp. 360-368, 1987. 19.M. Miyazaki, K. Nishio, M. Katoh, S. Mukaz, H. Nkerr, “Quantitative investigation of heat-affected zone cracking in aluminum alloy A6060,” Welding Journal, pp. 362-371, 1990. 20.J. C. Lippold, E. F. Nippes and W. F. Savage, “An investigation of hot cracking in 5083-O aluminum alloy weldment,” Welding Journal, pp. 171-178, 1977. 21.洪健仁、曾天佑, “AA6061-T6 鋁合金銲接熱裂敏感性研究”,中國材料科學學會80年年會論文集。 22.X. G. Chen and S. Engler, “Formation of gas porosity in aluminum alloys,” Trans. AM. Foundary Assoc. vol. 102, pp. 673-682, 1994. 23.N. Roy, A. M. Samuel and F. H. Ssmuel, “Porosity formation in Al-9 wt pct Si-3 wt pct Cu alloys system,” Metallurgical and Materials Transactions A, vol. 27A, pp. 415-429, 1996. 24.S. Kou, Welding metallurgy, John Wiley & Sons, New Jersey, pp. 70-114, 2002. 25.張文鉞、張炳范、杜則裕,焊接冶金學-基本原理,北京機械工業出版社,第130-149頁,2002。 26.T. S. Piwonka, M. C. Flemings, “Pore formation in solidification,” Transactions of the Metallurgy, Soc. of AIME, vol. 236, pp. 1157-1158, 1966. 27.D. R. Poirier, K. Yeurn and A. L. Maples, “A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloy,” Metallurgical and Materials Transactions A, vol. 18, pp. 1979, 1987. 28.G. K. Sigworth and C. Wang, “Mechanisms of porosity formation on during solidification : A theoretical analysis,” Metallurgical and Materials Transactions B, vol. 24, pp. 349, 1993. 29.J. P. Anson and J. E. Gruzlesli, “The quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys using spatial data analysis,” Materials Characterization, vol. 43, pp. 319-335, 1999. 30.廖建文、李景川,銲接人員訓練,漢翔航空工業股份有限公司訓練教材,第13頁,2002。 31.DPS 10. 225, “Specification for gas tungsten arc welding,” Boeing company, pp. 5-7, 1998. 32.E. R. Collins, “Porosity in aluminum alloy welds,” Welding Journal, vol. 37, no. 6, pp. 589-593, 1958. 33.F. R. Mollard, “A non-polluting degassing technique for aluminum alloy melts,” Modern Casting, pp. 60-61, 1979. 34.M. B. Kasen and A. R. Pfluger, “Chlorine addition for high quality inert gas metal arc welding of aluminum alloy,” Welding Journal, pp. 269s-276s, 1958. 35.P. K. Palani, N. Murugan, “Selection of parameters of pulsed current gas metal arc welding,” Journal of Material Process Technology, vol. 172, pp. 1-20, 2006. 36.P. Praveen, P. K. D. V. Yarlagadda, M. J. Kang, “Advancements in pulse gas metal arc welding,” Journal of Materials Processing Technology, vol. 164-165, pp. 1113-1119, 2005. 37.W. Troyer, M. Tomsic and R. Barhorst, “Investigation of pulse wave shapes for gas tungsten arc welding,” Welding Journal, pp. 26-32, 1997. 38.F. E. Tret, I. A. Baks, K. A. Prokhorova, “Pulsed argon arc welding of the titanium alloy,” Svar Proiz, vol. 3, pp. 30-31, 1967. 39.T. Mohandas, G. Madhusudhan Reddy, “A comparison of continuous and pulse current gas tungsten arc welds of an ultra high strength steel,” Journal of Materials Processing Technology, vol. 69, pp. 222-226, 1997. 40.D. W. Becker, C. M. Adams, “Investigation of pulsed GTA welding parameter,” Welding Journal, pp. 134s-138s, 1978. 41.H. Fujii, H. Umakoshi, Y. Aoki, K. Nogi, “Bubble formation in aluminum alloy during electron beam welding,” Journal of Materials Processing Technology, pp. 1252-1255, 2004. 42.K. D. Li, Ph. D. thesis: “A study on the mechanism of porosity formation in aluminum alloy casting,” Department of Materials Science and Engineering, National Cheng Kung University, 2003. 43.周振丰、包芳涵、任家烈、陳伯蠡、彭高峨,焊接冶金學-金屬焊接性,北京機械工業出版社,第122-130頁,1993。 44.C. E. Ransley and H. Neufeld, “The solubility of hydrogen in liquid and solid aluminum,” Journal of the Institute of Metals. vol. 74, pp. 599-620, 1947. 45.CC-021, “Specification for cleaning prior to chemical surface treatment aluminum,” Aerospace Industrial Development Corporation, pp. 2, 2005. 46.MPE-WI-102B, “Specification for Microetching metals and alloys,” Aerospace Industrial Development Corporation, pp. 4-5, 2005。 47.ASM, Atlas of microstructure of industrial alloys, Metals Handbook, 1980. 48.周長彬、蔡丕椿、郭央椹,銲接學,全華科技圖書,第155頁, 1999。 49.L. R. Hwang, C. H. Gung, T. S. Shih, “A study on the qualities of GTA weld squeeze-cast A356 alloy,” Journal of Materials Processing Technology, vol. 116, pp. 101-113, 2001. 50.MPE-WI-301G, “MPE-WI-301G Tension test of metallic materials,” Aerospace Industrial Development Corporation, pp. 19-21, 2007。 51.K. C. Jang, D. G. Lee, J. M. Kuk, I. S. Kim, “Welding and environmental test condition effect in weldability and strength of Al alloy,” Journal of Materials Processing Technology, pp. 1038-1045, 2005. 52.AF896, “Specification for fusion weld melting additions for castings,” Allied Signal, pp. 8-10, 1990. 53.辛虎譯,氣孔對鋁焊榫靜態和動態強度之影響,機械月刊第九卷第九期,第44-54頁,1977。
摘要: 鋁及其合金銲接產生氣孔(porosity)是一直無法避免的問題,於諸多文獻中皆提及氣孔產生源自氫氣造成,而氫氣介入銲道內,主要系經由母材表面之油汙、濕氣及保護氣體中水氣所引起,但上述肇因皆可透過完整清洗與環境的控制達到最佳狀態,若再經由製程中參數改變,將可讓氣孔面積再降低。 利用惰氣鎢極電弧銲(Gas Tungsten Arc Welding GTAW),俗稱氬銲,以交流電AC進行銲接,參數中引入脈衝(pulse)製程,藉由峰值電流(peak current)、基值電流(background current)、脈衝頻率、峰值時間與基值時間之設定調整,防止入熱量持續增加、熔池持續擴大,以期降低氣孔產生機會。 實驗結果顯示,當其它參數固定以連續電流(continuous current)及脈衝電流(pulse current)進行銲接,脈衝電流產生較窄且較淺之銲道,相對的造成銲道中較少氣孔面積,和銲道中單位面積內較低氣孔百分比。脈衝電流同時造成銲道內晶粒細化而增加抗拉強度。 除此之外,同時以脈衝電流進行銲接,當其它參數相同下,峰值電流時間較長時,由於入熱量相對較高,與峰值電流較短相比較,銲道內產生較高氣孔面積,但銲道單位面積內之氣孔百分比是相近的。脈衝電流過程,由於入熱量波動造成熔池產生條紋狀,氫因於鋁固液溶解度差異大,過量溶質氫排出於固液界面上呈現輪弧狀分佈。
The porosity formation of aluminum and aluminum alloy welding is an unavoidable problem. Many studies show that porosity is come from hydrogen. The medium of hydrogen comes into fusion zone, and primary sources include the oil of the base material surface, humidity as well as steam of the shield gas. But as described results above, it can be improved by completed cleaning and controlling the environment. Besides, changing welding parameters of the welding process will decrease the area of the porosity. The Gas Tungsten Arc Welding (GTAW) was performed in this study under alternating current. The pulse parameters involved in procedure. The peak current, background current, pulse frequency, peak time and background time were adjusted to avoid continuous increasing of heat input, enlarging the weld pool, and then reduce the possibility of the porosity. The test results show that the pulse current can produce narrower and shallower weld nugget by continuous current and pulse current when fixed the other parameters. It produces less porosity areas and lower porosity percentages in a unit area of the weld nugget. Furthermore, the pulse current leads to grain refinement and increases the tensile strength. Besides, welding was proceed by the pulse current under the same other parameter. The heat input is relatively higher when the peak current time is longer. To compare with the shorter time, the weld nugget will produce relatively a larger porosity area, but the porosity percentage is similar in a unit area. With pulse current, the thermal fluctuating will cause the banding of the weld pool, and the solubility of hydrogen has an obvious difference in the liquid and solid, great amounts of solute rejected into the liquid at the S/L interface and exhibited an annular distribution.
URI: http://hdl.handle.net/11455/10144
其他識別: U0005-0904200710484000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0904200710484000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.