Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10146
標題: Effect of adding hygroscopic metal and metal oxide particles in the anode catalyst layer on the PEMFC performance by PVD and ultrasonic techniques
利用物理氣相沉積技術與超音波震盪技術添加可溼性金屬氧化物與金屬顆粒於陽極觸媒層中對於質子交換膜燃料電池效能的影響
作者: Chao, Wen-Kai
趙文愷
關鍵字: Proton exchange membrane fuel cell
質子交換膜燃料電池
Water management
Zinc Oxide
Ti-V-Cr alloy
Titanium
Anode catalyst layer
PVD DC sputter system
水管理
氧化鋅

鈦釩鉻合金
陽極觸媒層
PVD直流濺鍍
出版社: 材料科學與工程學系所
引用: [1] G. Weightman, What the industrial revolution did for us, 2003, London: BBC. [2] S. Fawkes, Outsourcing Energy Management: Saving Energy and Carbon through Partnering, 2007, Hampshire: Gower Publishing. [3] S. J. Hansen, P. Lanqlois, P. Bertoldi, ESCOs Around the World, 2009, Washington: CRC Press. [4] E. Shin, The impact of the first oil crisis on energy demand in Korea, Energy Economics, 1982, October, p259. [5] E. Sesto, C. Casale, Journal of Wind Engineering and Industrial Aerodynamics, 74-76 (1998) 375. [6] A. D. Sahin, Progress in Energy and Combustion Science, 30 (2004) 501. [7] I. Yuksel, Renewable and Sustainable Energy Reviews, 14 (2010) 3213. [8] B. Ogayar, P. G. Vidal, J. C. Hernandez, Renewable Energy, 34 (2009) 2501. [9] A. Mawire, M. McPherson, R. R. J. Van den Heetkamp, Solar Energy Materials & Solar Cells, 92 (2008) 1668. [10] C. G. Granqvist, Solar Energy Materials & Solar Cells, 91 (2007) 1529. [11] D. A. Chwieduk, Solar Energy, 82 (2008) 870. [12] D. O. J. Murphy, G. D. Hitchens and D. J. Manko, J. Power Sources, 47 (1994) 353. [13] M. L. Perry, T. F. Fuller, J. Electrochem. Soc., 149 (2002) S59. [14] K. B. Prater, J. Power Sources, 61 (1996) 105. [15] J. Chen, T. Matsuura and M. Hori, J. Power Sources, 131 (2004) 155. [16] R. Beneito, J. Vilaplana and S. Gisbert, Int. J. Hydrogen Energy, 32 (2007) 1554. [17] J. J. Hwang, D. Y. Wang, N. C. Shih, D. Y. Lai and C. K. Chen, J. Power Sources, 133 (2004) 223. [18] G. Hoogers, Fuel Cell Technology Handbook, 2003, CRC Press. [19] K. Sopin, W. Daud, Renewable Energy 31 (2006) 719. [20] 衣寶廉,燃料電池-原理與應用,2005,五南圖書出版社 [21] 黃鎮江,燃料電池,2005,全華科技圖書公司 [22] C. Rayment and S. Sherwin, Introduction of Fuel Cell Technology, Department of Aerospace and Mechanical Engineering University of Notre Dame, 2003. [23] J. H. Hirschenhofer, D. E. Stauffer, R. R. Engleman and M. G. Klett, Fuel Cell Handbook 4th Edition, U.S. Department of Commerce, 1998, Springfield, VA. [24] Y. Zhang, X. Huang, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, Compd., 428, (1-2), 31 (2007) 302. [25] J. Larminite, A. Dicks, Fuel Cell System Explained, John Wiley & Sons, Ltd, Chichester, 2000, England. [26] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao and J. Yu, J. Power Sources, 79 (1999) 75. [27] K. Jayakumar, S. Pandiyan, N. Rajalakshmi, K. S. Dhathathreyan, J. Power Sources, 161 (2006) 454. [28] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de Waal, J. Power Sources, 118 (2003) 44. [29] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, J. Phys. Chem. B., 102 (1998) 9997. [30] H. Wendt, Electrochim. Acta, 31 (2001) 3637. [31] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee and Y. E. Sung, J. Phys. Chem. B, 106 (2002) 1869. [32] M. S. Wilson, J. A. Valerio and S. Gottesfeld, Electrochim. Acta, 40 (1995) 355. [33] G. S. Kimar, M. Raja and S. Parthasarathy, Electrochim. Acta, 40 (1995) 285. [34] M. S. Willon, U. S. Pat. No.5,234,777 (1993). [35] R. O’Hayre, S. J. Lee, S. W. Cha and F. B. Prinz, J. Power Sources, 109 (2002) 483. [36] D. Gruber, N. Ponath and J. M”uller, Electrochim. Acta, 51 (2005) 701. [37] S. Litster and G. McLean, J. Power Sources, 130 (2004) 61. [38] L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Electrochim. Acta, 43 (1998) 3675. [39] C. Lim and C. Y. Wang, Electrochem. Acta, 49 (2004) 4149. [40] D. S. Chan and C. C. Wan, J. Power Sources, 50 (1994) 163. [41] J. Benziger, J. Nehlsen, D. Blackwell, T. Brenan and J. Itescu, J. Membrane Sci., 261 (2005) 98. [42] G. Karimi, X. Li, J. Power Sources, 140 (2005) 1. [43] X. Ren, S. Gottesfeld, J. Electrochem. Soc., 148 (2001) A87. [44] U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc., 151 (2004) A399. [45] N. Djilali, D. Lu, Int. J. Therm. Sci., 41 (2002) 29. [46] J. Chen, T. Matsuura, M. Hori, J. Power Sources, 131 (2004) 155. [47] F. Barbir, PEM Fuel Cells: Theory and Practice, Elsevier/Academic Press, San Diego, 2005, p. 93. [48] S. Litster, G. McLean, J. Power Sources, 130 (2004) 61. [49] D. Bevers, R. Rogers, M. von Bradke, J. Power Sources, 63 (1996) 193. [50] V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, J. Appl. Electrochem., 26 (1996) 297. [51] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Electrochim. Acta, 43 (1998) 3675. [52] H. K. Lee, J. H. Park, D. Y. Kim, T. H. Lee, J. Power Sources, 131 (2004) 200. [53] W. T. Grubb, Proceeding of the 11th Annual battery Research and Development Conference, PSC Publications Commiyyee, Red bank, NJ, (1957); U. S. Patent No. 2,913,511 (1959). [54] F. N. Buchi, D. Tran and S. Srinivassan, Proceeding of the First International Symposium on Proton Conducting Membrane Fuel Cells I, the Electrochemical Society, Inc., Pennington, NJ, (1995) p226. [55] W. H. Buck, Proceeding of the Power Sources Conference(37th), Army Research Lab., Fort Monmouth, (1996) p104. [56] P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja and K. S. Dhathathretan, J. Power Sources, 101 (2001) 72. [57] R. Eckl, W. Zehtner, C. Leu, U. Wagner, J. Power Sources, 138 (2004) 137. [58] Y. Qiangu, T. Hossein, W. Junxiao, J. Power Sources, 158 (2006) 316. [59] R. Beneito, J. Vilaplana, S. Gisbert, Int. J. Hydrogen Energy, 32 (2007) 1554. [60] J. J. Hwang, D. Y. Wang, N. C. Shih, D. Y. Lai, C. K. Chen, J. Power Sources, 133 (2004) 223. [61] J. H. Lin, W. H. Chen, Y. J. Su, T. H. Ko, Fuel, 87 (2008) 2420. [62] J. P. Owejan, J. J. Gagliardo, J. M. Sergi, S. G. Kandlikar, T. A. Trabold, Int. J. Hydrogen Energy, 34 (2009) 3436. [63] N. Karst, V. Faucheux, A. Martinent, P. Bouillon, J. Y. Laurent, F. Druart, J. P. Simonato, J. Power Sources, 195 (2010) 1156. [64] S. Park, B. N. Popov, Fuel, 88 (2009) 2068. [65] S. Ren, G. Sun, C. Li, S. Song, Q. Xin, X. Yang, J. Power Sources, 157 (2006) 724. [66] Y. Qiangu, T. Hossein, W. Junxiao, J. Power Sources, 158 (2006) 316. [67] A. Sacca, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini and R. Ornelas, J. Power Sources, 152 (2005) 16. [68] T. Vidakovic, M. Christov, K. Sundmacher, J. Electrochim. Acta, 52 (2007) 5606. [69] L. Xiong, A. Manthiram, Electrochemica Acta, 50 (2005) 2323. [70] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, J. Power Sources, 123 (2003) 116. [71] M. Han, S. H. Chan and S. P. Jiang, Int. J. Hydrogen Energy, 32 (2007) 385. [72] E. D. Wang, P. F. Shi and C. Y. Du, J. Power Sources, 175 (2008) 183. [73] Y. Zhang, H. Zhang, X. Zhu, L. Gang, C. Bi and Y. Liang, J. Power Sources, 165 (2007) 786. [74] M. Watanabe, H. Uchida, Y. Seki, and M. Emori, J. Electrochem. Soc., 143 (1996) 3847. [75] E. Chalkova, M. B. Pague, M. V. Fedkin, D. J. Wesolowski and S. N. Lvov, J. Electrochem. Soc., 152 (2005) A1035. [76] H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 161 (2006) 893. [77] Y. Qiangu, T. Hossein and W. Junxiao, J. Power Sources, 158 (2006) 316. [78] F. B. Weng, A. Su, C. Y. Hsu and C. Y. Lee, J. Power Sources, 157 (2006) 674. [79] S. Litster, C. R. Buie, T. Fabian, J. K. Eaton, and J. G. Santiagoz, J. Electrochem. Soc., 154 (2007) B1049. [80] M. Eikerling, J. Electrochem. Soc., 153 (2006) E58. [81] Z. G. Shao, P. Joghee, I. M. Hsing, J. Memb. Sci., 229 (2004) 43. [82] N. H. Jalani, K. Dunn, R. Datta, Electrochim. Acta, 51 (3) (2005) 553. [83] F. Croce, L. Settimi, B. Scrosati, Electrochem. Commun., 8 (2006) 364. [84] S. Ren, G. Sun, C. Li, S. Song, Q. Xin, X. Yang, J. Power Sources, 157 (2006) 724. [85] Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci., 212 (2003) 263. [86] U. H. Jung, K. T. Park, E. H. Park, S. H. Kim, J. Power Sources, 159 (2006) 529. [87] S. Vengatesan, H. J. Kim, S. Y, Lee, E. Cho, H. Y. Ha, I. H. Oh, S. A. Hong, T. H. Lim, Int. J. Hydrogen Energy, 33 (2008) 171. [88] W. K. Chao, C. M. Lee, D. C. Tsai, C. C. Chou, K. L. Hsueh and F. S. Shieu, J. Power Sources, 185 (2008) 136. [89] Y. H. Chung, Thesis for master degree of Science department of Material Engineering, Tatung University, 2009. [90] T. W. Chiu, Thesis for master degree of department of Material Science and Engineering, Chung-Hsing University, 2010. [91] C. H. Wang, Thesis for Ph. D degree of department of Material Science and Engineering, Tsing-Hua University, 2007. [92] S. Y. Huang, Thesis for Ph. D degree of department of Chemistry, Tsing-Hua University, 2006 [93] http://www.nscric.nthu.edu.tw/index1.html [94] C. C. Chen, Thesis for Ph. D degree of department of Material Science and Engineering, Chiao-Tung University, 2006 [95] H. J. Kim, D. Y. Kim, H. Han and Y. G. Shul, J. Power Sources, 159, 484 (2006). [96] S. V. Kraemer, K. Wilander, G. Lindbergh, A. Lundblad and A. E. C. Palmqvist, J. Power Sources, 180, 185 (2008). [97] B. M. Mahan and R. J. Myers, University Chemistry, p. 111, The Benjamin/Cummings Publishing Company, California (1987). [98] H. C. Tu, Y. Y. Wang, C. C. Wan, and K. L. Hsueh, J. Power Sources, 159 (2006) 1105.
摘要: 鑒於國內外各單位對於燃料電池近幾年來的努力,目前已成功的解決許多技術及本質上的問題,然而距離商品化的目標仍面臨許多的挑戰,其中燃料電池陰陽兩極的水管理與CO毒化的問題為決定質子交換膜燃料電池發電效率及穩定性的重要因素。 為提升質子交換膜燃料電池於低溼度下的效能,大部分的文獻皆著重於改良Nafion® 膜的可溼性。主要的改良方式為利用親水性過度金屬氧化物(Transition metal oxide)作為水分子吸附劑添加於Nafion® 溶液中以製備高可溼性的Nafion® 膜。而且,只有少數文獻提及改善觸媒層的可溼性及提升燃料電池於低濕度環境下效能的影響。本論文為水分子吸附劑添加之複合觸媒層在低溼度環境下提升膜電極的可溼性研究。首先將金屬親水性氧化鋅水分子吸附劑利用超音波震盪技術添加於陽極觸媒層中提高觸媒層的可溼性並提升質子交換膜燃料電池於低濕度下的效能。接著利用直流物理氣象沉積法將鈦與鈦氧化物濺鍍於陽極觸媒層上以減緩在相同增溼能力下鈦氧化物的沉積量,避免由於電阻增加而導至效能下降。同時也研究金屬水分子吸附劑的可行性。最後利用直流物理氣象沉積法將鈦釩鉻濺鍍於陽極觸媒層上探討偏壓對於可溼性的影響。根據實驗的結果,對於使用金屬氧化物水分子吸附劑,效能改善的程度主要為觸媒層可溼性與電阻的增加兩大關鍵因素競爭下的結果。而使用金屬水分子吸附劑,效能改善的程度主要為觸媒層可溼性與水氾濫兩大關鍵因素競爭下的結果。整體而言添加水分子吸附劑於陽極觸媒層中確實可以提升質子交換膜燃料電池於低溼度下的效能,並可以避免因為添加水分子吸附劑於Nafion® 膜中對於膜的機械性質的影響。
An adequate water management system to avoid the drying and flooding phenomena of the membrane electrode assembly (MEA) and an effective CO-tolerant catalyst are still the two main challenges needed to be overcome. Since the CO-poisoning phenomenon is induced by the low operation temperature (<100℃) of PEMFC limited by inappropriate water management, a well-established adequate water management system could solve these two challenges simultaneously. This study aims to investigate the feasibility of fabricating composite anode catalyst layer to increase the wettability of MEA at low humidity condition and then improve the performance of PEMFC. For fabricating composite anode catalyst layer, commercial and homemade ZnO hygroscopic particles were firstly added into the anode catalyst layer by ultrasonic technique. Secondly, island-like TiOx nano-particles were deposited on the surface of anode catalyst layer by direct sputtering for easing the negative effect caused by the inherent high electrical resistance of the hygroscopic metal oxide particles, by reducing the amount of hygroscopic metal oxide particles addition with same wettability improvement. Finally, Ti and Ti-V-Cr alloy were used as water adsorbent to be deposited on the surface of anode catalyst layer by direct sputtering for solving the dilemma caused by the inherent high electrical resistance of the hygroscopic metal oxide particles. To sum up, among all the specimens in which ZnO particles were added to the anode catalyst layer, the MEA with 10% ZnO particles addition exhibits the highest current density at different anode humidifier temperatures ranging from 25 to 65℃. Furthermore, the MEAs with anode sputtered by Ti all revealed better performance improvement than that sputtered with TiOx at low humidifying temperature (25, 45℃) even the TiOx-supttered anode showed better wettability than that of Ti-sputtered. At anode humidifier temperature 25℃ and 45℃, the highest improvement of Ti-V-Cr-sputtered MEAs with 100V bias were 35% and 26%, which are higher than the MEAs added with ZnO, sputtered with Ti and sputtered with TiOx. For the MEAs with transition metal oxide water adsorbent (ZnO and TiOx) at anode, the cell performance is determined by a competition mechanism between wettability and the variation of electrical resistance caused by transition metal oxide water adsorbent addition. Furthermore, for the MEAs with metal adsorbent, the cell performance was mainly determined by a competition mechanism between the positive effect arose from the enhancement of wettability of anodic catalyst layer and the negative effect of flooding induced by the excess hygroscopic metal (Ti and Ti-V-Cr).
URI: http://hdl.handle.net/11455/10146
其他識別: U0005-1204201115415900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1204201115415900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.