請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/10151
標題: The Characteristics of Aluminum/Magnesium Multi-layers Composite after Accumulative Roll Bonding
累積軋延之鋁/鎂多層複合材料特性研究
作者: Chen, Ming-Che
陳明哲
關鍵字: Accumulative roll bonding
累積軋延製程
intermetallic compounds
grain sizes
activation enthalpies
corrosion
介金屬化合物
晶粒尺寸
活化能
腐蝕
出版社: 材料科學與工程學系所
引用: [1] 鄧茂英。金屬多層板材料技術簡介。材料世界網。 [2] 田雅琴、秦建平、李小紅,“金屬複合板的工藝研究現狀與發展”,材料開發與應用,第21卷,第40-43頁,2006。 [3] 周俊杰、龐玉華、蘇曉莉、王敬忠,“金屬層狀複合技術的研究”,材料報導,第220-223頁,2005。 [4] 李彥利、李富德、胡捷、馬志新,“層狀金屬複合板的研究和生產現狀,”稀有金屬,第27卷,第799-803頁,2003。 [5] 朱兆華、胡文韜、梁惠冬,”不銹鋼/鋁/不銹鋼軋制複合工藝的研究”,鋁加工,第25卷,第8-13頁,2002。 [6] V. A. Altekar, S. K. Banerjee, B. N. Ghose, and J. Bhattacharya, “Development of clad metals for various applications,” NHL Tech. J., Vol. 23, pp. 32-36, 1981. [7] K. Shinji, “Application of new welding and joining processes to rolling stock and aerospace industries,” J. Jpn. Weld. Soc. Vol. 72, pp. 49-52, 2003. [8] A. Yahiro, T. Masui, T. Yoshida, and D. Doi, “Development of nonferrous clad plate and sheet by warm rolling with different temperature of materials,” IJIS Int. Vol. 31, pp. 467-654, 1991. [9] Website:http://www.wickeder.de/ [10] Website:http://www.cladmetal.com/ [11] Website:http://www.koreaclad.com/ [12] Website:http://www.dynamicmaterials.com/home [13] Website:http://www.ametek.com/producys/aerospace.cfm [14] Website:http://www.cirusgroup-hylite.com/ [15] Website:http://www.furukawa.co.jp/index.htm [16] Website:http://www.jfe-steel.co.jp [17] Website:http://www.technicalmaterials.com/ [18] Website:http://www.emsclad.com/ [19] Website:http://www.amidoduco.com/cm.html [20] Website:http://www.voestalpine.com/ag/de/products/groups.html [21] Website:http://www.imphyalloys.com/ [22] Website:http://www.jfe-steel.co.jp/ [23] Website:http://www.neomax.co.jp/ [24] K. H. Latucha, P. Wincierz, In Chemische Technologie, Vol. 4, 4th ed, Munich: Carl Hanser, pp. 1-37, 1986. [25] E. Ohshima, M. Kikuchi, Y. Syono, “Superconductivity in TlSr2-xCaxYbCu2O7 by isovalent cation substitution,” Phy. C, Vol. 242, pp.12-16, 1995. [26] K. Nakajima, Proceeding of the 52th Annual Meeting of IMA, San Francisco, USA, May 21-23, p.15, 1995. [27] S. Schumann, and F. Friedrich, Magnesium Alloys and their Applications, Werkstoff-Informationsgesellschaft mbH, Wolfsburg, Germany, p. 3, 1998. [28] D. Magers, J. Willekens, “Magnesium Alloys and their Applications,” Eds. B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Wolfsburg, Germany, p. 105, 1998. [29] R. Edgar, Proceeding of the 56th Annual Meeting of IMA, Rome, Italy, p. 21, June 6-8, 1999. [30] T. B. Guruganus, R. G. Gilliland, and H. Hunt, “On Basic Technologies for Future Industry,” Jpn. Ind. Tech. Assoc., pp.99-142, 1988. [31] N. Tsuji, R.Ueji, Y. Ito, and Y. Saito, "In-situ Recrystallization of Ultra-fine Grains in Highly Strained Metallic Materials," Proc. of the 21st RISO Int. Symp. on Materials Science, RISO National Laboratory, Denmark, pp.607-616, 2000. [32] Y. Saito, H. Utsunomiya, H. Suzuki, and T. Sakai, “Improvement in the r-value of aluminum strip by a continuous shear deformation process,” Scripta Mater., Vol. 42, pp. 1139-1144, 2000. [33] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, ” Accumulative roll-bonding of 1100 aluminum,” J. Jpn. Inst. Met., Vol.63, pp. 790-795, 1999. [34] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding process,” Scripa Mater. Vol. 39, pp. 1221-1227, 1998. [35] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, ” Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process,” Acta Mater., Vol. 47, pp. 579-583, 1999. [36] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple Smith, and C. J. Dawes, ” Friction stir welding and related friction process characteristics ,” Weld. Inst., TWI, Vol. 460, pp. 317-321, 1995. [37] Y. Wang and R.S. Mishra, “Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloy,” Mater. Sci. Eng. A, Vol. 463, pp.245-248, 2007. [38] Ying Li, L. E. Murr and J. C. McClure, ” Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, Vol. 271, pp. 213-220, 1999. [39] S. Takaki, Sanyo Technical Report 3.2, 1996. [40] Sakai, Genki, Horita, Zenji, Langdon, and G. Terence, ”Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion,” Mater. Sci. Eng. A, Vol. 393, pp. 344-351, 2005. [41] Y. Todaka, M. Umemoto, J. Yin, Z. Liu, and K. Tsuchiya, ” Role of strain gradient on grain refinement by severe plastic deformation,” Mater. Sci. Eng. A, Vol. 462, pp. 264-264, 2005. [42] G. Sakai, Z. Horita, and T. G. Langdon, “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion,” Mater. Sci. Eng. A, Vol. 393, pp.344-351, 2005. [43] R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, ” Plastic deformation of alloys with submicron-grained structure,” Mater. Sci. Eng. A, Vol. 9, pp. 35-40, 1990. [44] R. Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapwlski, and B. Baudelet, ” Hall-petch relation in submicro-grained Al-1.5% Mg alloy,” Scripta Mater. Vol. 27, pp. 855-860, 1992. [45] R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, and B. Baudelet, “Structure and deformation behaviour of Armco iron subjected to severe plastic deformation,” Acta Metall., Vol. 44, pp. 4705-4712, 1996. [46] R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, “Plastic deformation of alloys with submicron-grained structure,” Mater. Sci. Eng. A, Vol. 137, pp. 35-40, 1991. [47] R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation,” Mater. Sci. Eng. A, Vol. 168, pp. 141-148, 1993. [48] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, ” Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size,“ Acta Mater., Vol. 44, pp. 4619-4629, 1996. [49] Y. Kimura and S. Takaki, “Microstructural changes during annealing of work-hardened mechanically milled metallic powders,” Mater. Trans., Vol. 36, pp. 289-296, 1995. [50] K. Ameyama, M. Hiromitsu, and N. Imai, “Room temperature recrystallization and ultra fine grain refinement of an SUS316L stainless steel by high strain powder metallurgy process,” J. Iron & Steel Inst of Japan, Vol. 84, pp. 357-362, 1998. [51] 吳彩虹、李廷舉、金俊澤,”雙金屬覆層材料制備現狀及研究進展”,鑄造,第54卷,第103-107頁,2005。 [52] G. Drust, “A new development in metal cladding,” J. Met., Vol.3, pp. 328-333, 1956. [53] 于九明,”金屬層狀複合技術及其新進展”,材料研究學報,第14卷,第12-16頁,2000。 [54] 管平、馬青圃、胡祖堯、杜月春,”雙液雙金屬複合鑄造顎板新工藝研究與應用”,鑄造,第54卷, 第779-782頁,2005。 [55] 薛志勇、吳淵、謝建新、吳春京、秦延慶”,銅包鋁複合材料連鑄充芯工藝”,鑄造,第54卷,第394-397頁,2005。 [56] 張衛文、李元元,”半連續鑄造法製備AlCu/Al梯度材料”,中國有色金屬學報,第5卷,第188-190頁,2002。 [57] 于浩民、吳春京、謝建新、吳淵,”雙金屬層狀複合台材料連鑄工藝的研究進展”,鑄造技術,第25卷,第400-401頁,2004。 [58] 張衛文、郁鴿、李元元、邱誠,”採用連續鑄造方式製備的梯度材料”,材料報導,第14卷,第24-26頁,2000。 [59] 吳春京、謝建新、趙立華、王自東、周成,”雙結晶器連鑄銅2鋅鋁合金雙金屬複合材料”,第3卷,第26頁,2002。 [60] 邱惠中,”擴散焊接及其在航空航天領域的應用”,航宇材料工藝,第4卷,第30頁,1997。 [61] 譚天亞、傅正義、張東明,”擴散焊接異種金屬及陶瓷/金屬的研究進展”,硅酸鹽通報,第1卷,第60-63頁,2003。 [62] E. J. Lavernia and N. J. Grant, “Spray deposition of metals : A review,” Mater. Sci. Eng., Vol. 98, pp. 384-391, 1981. [63] 傅定發、陳振華,”噴射沉積技術與雙金屬材料的製備”,兵器材料科學與工程,第23卷,第65-67頁,2001。 [64] 張淑英、張二林,”噴射共沉積金屬及複合材料的發展現狀”,宇航材料工藝,第4卷,第4-7頁,1996。 [65] C. Q. Xia and Z. P. Jin, “Interfacial reactions in an explosively-welded tantalum clad steel plate,” Surf. Coat. Technol., Vol. 130, pp. 29-32, 2000. [66] I. Takeshi, H. Kazuyuki, F. Masahiro, and N. Toru, “Improvement of the bonding strength of Al/Cu transition joint made by single-shot explosive welding technique using Cu intermediate plate,” J. Japan Weld. Soc., Vol. 12, pp. 77-81, 1994. [67] Y. C. Ha, J. H. Bae, T. H. Ha, H. G.Lee, D. K. Kim, and B. I. Lee, “Electrochemical and optical characterization of the corrosion resistivity of explosively bonded Al-Cu bimetal,” Mater. Sci. Forum, Vol. 475-479, pp. 2675-2678, 2005. [68] J. H. Han, J. P. Ahn, and M. C. Shin, “Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding,” J. Mater. Sci., Vol. 38, pp. 13-18, 2003. [69] S. Yano, H. Matsui, and S. Morozumi, “Structural observations of the interface of explosion-bonded Mo/Cu system,” J. Mater. Sci., Vol. 33, pp. 4857-4685, 1998. [70] N. Kahraman, B. Gulenc, and F. Findik, “Joining of titanium/stainless steel by explosive welding and effect on interface,” J. Mater. Process. Technol., Vol. 169, pp. 127-133, 2005. [71] 鄭遠謀、陳世紅、黃榮光,”爆炸焊接與熱雙金屬”,鋼鐵研究,第2卷,第60-63頁,2000。 [72] 胡蘭青、衛英慧、許并社、黃源、李欣田,爆炸焊接鋼/鋼複合板接合界面微觀結構分析,材料熱處理學報,第25卷,第46-48頁,2004。 [73] 鄭遠謀、黃榮光,”爆炸焊接和金屬複合材料”,上海有色金屬,第19卷,第121-124頁,1998。 [74] 林大超、史慶南,”雙金屬軋製複合技術及其研究進展”,雲南冶金,第27卷,第32-36頁,1998。 [75] 魏偉、史慶南,”銅/鋼雙金屬板異步軋製複合機理研究”,稀有金屬,第7卷,第307-311頁,2001。 [76] 亢世江、呂玉申、陸軍芳,”金屬冷壓焊結合機理實驗研究”,機械工程學報,第35卷,第77-80頁,1999。 [77] 李河宗、李玉剛、于九明、黃素霞,”不銹鋼和鋁固相軋製複合的結合機理”,河北理工學院學報,第24卷,第24-27頁,2002。 [78] 馬成勇、杜則裕、李云濤,”金屬冷壓焊界面結合機理探討”,天津大學學報,第35卷, 第516-520頁,2002。 [79] 李云濤、馬成勇、杜則裕,”Interfacial energy and match of cold pressure welded Ag/Ni and Al/Cu” ,中國有色金屬學會會刊,第12卷,第814-817頁,2002。 [80] Roll Welding, ASM Handbook vol. 6, Welding, Brazing, and Soldering, ASM, Materials Park, OH, pp. 312-314 and 961-963, 1993. [81] H. Q. Kazagof, “Diffusion Welding of Materials, National Defense Industry Press,” pp. 4-12, 1984. [82] N. Bay, “Mechanism producing metallic bonds in cold welding,” Weld. Res. Suppl., pp. 137-142, 1983. [83] J. A. Cave and J. D. Williams, “The mechanism of cold pressure welding by rolling,” J. Inst. Met., Vol. 101, pp. 203-207, 1973. [84] L. R. Vaidyanath and D. R. Milner, “Significance of surface preparation in cold pressure welding,” Br. Weld. J., pp. 1-6, 1960. [85] R. C. Pendrous, A. N. Bramley, and G. Pollard, “Cold roll and indent welding of some metals,” Met. Technol., Vol. 11, pp. 280-289, 1984. [86] 李云濤、杜則裕、陶勇寅,”Interfacial bonding state on different metals Ag, Ni in cold pressure welding”,中國有色金屬學會會刊,第4卷,第276-279頁,2003。 [87] D. Pan, K. Gao, and J. Yu, “Cold roll bonding of bimetallic sheets and strips,” Mater. Sci. Technol. Vol. 5, pp. 934-939, 1989. [88] H. Y. Wu, S. Lee, and J. Y. Wang, “Solid-state bonding of iron-based alloys, steel-brass, and aluminum alloys,” J. Mater. Process. Technol., Vol. 75, pp. 173-179, 1998. [89] 中村光雄,”異種金屬常溫壓接”,熔接技術,第1卷,第35-39頁,1998。 [90] 何康生,異種金屬焊接,機械工業出版社,第25-31頁,1986。 [91] H. D. Manesh and A. K. Taheri, “An investigation of deformation behavior and bonding strength of bimetal strip during rolling,” Mech. Mater., Vol. 37, pp. 531-542, 2005. [92] H. D. Manesh and A. K. Taheri, “Bond strength and formability of an aluminum-clad steel sheet,” J. Alloys Compd., Vol. 361, pp. 138-143, 2003. [93] K. D. Leedy and J. F. Stubbins, “Copper alloy stainless steel bonded laminates for fusion reactor applications-crack growth and fatigue,” Mater. Sci. Eng. A, Vol. 297, pp. 19-25, 2001. [94] J. S. Yoon, S. H. Lee, and M. S. Kim, “Fabrication and brazeability of a three-layers 4343/3003/4343 aluminum clad sheet by rolling,” J. Mater. Process. Technol., Vol. 111, pp. 85-89, 2001. [95] J. J. Moore, D. V. Wilson, and W. T. Roberts, “Fabrication of formability metal-metal composites,” Mater. Sci. Eng., Vol. 48, pp. 113-121, 1981. [96] M. A. Khodadad, M. Kocak and V. Ventzke, “Mechanical and fracture characterization of a bi-material steel plate,” Int. J. Pressure Vessels and Piping, Vol. 79, pp. 181-191, 2002. [97] F. Ebrahimi, Q. Zhai, and D. Kong, “Mechanical properties of Cu/Ag multilayered composites,” Mater. Sci. Eng. A, Vol. 255, pp. 20-32,1998. [98] Q. Zhai, D. Kong, A. Morrone and F. Ebrahimi, “Characterization of high strength Cu/Ag multilayered composites,” Mater. Res. Soc. Symposium – Proceed., Vol. 451, pp. 489-494, 1997. [99] P. C. Totorici and M. A. Dayananda, “Phase formation and interdiffusion in Al-clad 430 stainless steels,” Mater. Sci. Eng. A, Vol. 244, pp. 207-215, 1998. [100] B. Hannech, N. Lamoudi, N. Benslim, and B. Makhloufi, “Intermetallic formation in the aluminum-copper system,” Surf. Rev. Lett., Vol.10, pp. 677-683, 2003. [101] H. G. Jiang, J. Y. Dai, H. Y. Tong, Q. H. Song, and Z. Q. Hu, “Interfacial reactions on annealing Cu/Al multilayer thin films,” J. Apll. Phys., Vol. 74, pp. 6165-6169, 1993. [102] N.F. Kazakoz, Diffusion bonding of materials, Oxford , Pergamon Press, Mir Publishers, Moscow, New York, pp. 654-631, 1985. [103] R. J. Borg and G. J. Dienes, An introduction to solid state diffusion, Academic Press, Boston, pp. 362-373, 1988. [104] D. A. Porter, K. E. Easterling, Phase transformations in metas and alloys, London; Chapman & Hall, New York, pp. 422-426, 1992. [105] T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle, “Atomic structure of Al/Al interface formed by surface activated bonding,” J. Mater. Sci., Vol. 34, pp. 4133-4139, 1999. [106] J. M. Howe, “Atomic structure, composition mechanisms and dynamics of transformation interfaces in diffusional phase transformations,” Mater. Trans., JIM, Vol. 39, pp. 3-23, 1998. [107] T. Suga. Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall., Vol. 40, pp. 133-137, 1992. [108] A. E. Romanov, T. Wagner, and M. Ruehle, “Coherent to incoherent transition in mismatched interfaces,” Scripta Mater., Vol. 38, pp. 869-875, 1998. [109] N. D. Browning and S. J. Pennycook, “Direct experimental determination of the atomic structure at internal interfaces,” J. Phys. D, Vol. 29, pp. 1779-1798, 1996. [110] K. L. Merkle, “High-resolution electron microscopy of interfaces in fcc materials,” Ultramicroscopy, Vol. 37, pp. 130-152, 1991. [111] A. T. Paxton, “Atomic structure of metallic interfaces,” J. Phys. D, Vol. 29, pp. 1689-1698, 1996. [112] R. G. Hoagland, T. E. Mitchell, J. P. Hirth, and H. Kung, “On the strengthening effects of interfaces in multilayer fcc metallic composites,” Philos. Mag. A, Vol. 82, pp. 643-664, 2002. [113] J. Wang, Y. J. Li, H. J. Ma, and Y. S. Yin, “Microstructure and diffusion kinetics at the bonded Fe-16Al/Cr18-Ni8 interface,” React. Kinet. Catal. Lett., Vol. 87, pp. 67-75, 2005. [114] J. G. Ren, Y. J. Li, and F. Tao, “Microstructure characteristics in the interface zone of Ti/Al diffusion bonding,” Mater. Lett., Vol. 56, pp. 647-652, 2002. [115] Y. J. Li, J. Wang, Y. S. Yin, and H. Q. Wu, “Phase constitution near the interface zone of diffusion bonding for Fe3Al/Q235 dissimilar materials,” Scripta Mater., Vol. 47, pp. 851-856, 2002. [116] J. Wang, Y. J. Li, and P. Liu, “XRD and TEM analysis on the Fe3Al/18-8 stainless steel diffusion bonded interface,” Mater. Lett., Vol. 57, pp. 4323-4327, 2003. [117] G. A. Lopez, S. Sommadossi, W. Gust, E. J. Mittemeijer, and P. Zieba, “Phase characterization of diffusion soldered Ni/Al/Ni interconnections,” Interface Sci., Vol. 10, pp. 13-19, 2002. [118] L. N. Larkov, Diffusion. Intermetallic compounds: Vol. 1 Pricioles., N. Y. John Wiley& Sons Ltd, New York, pp. 757-770, 1994. [119] M. J. Rathod and M. Kutsuna, “Joining of Aluminum Alloy 5052 and Low-Carbon Steel by Laser Roll Welding,” Weld. J., Vol. 83, pp. 16-26, 2004. [120] N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, and Y. Minamino, ” Aging behavior of ultrafine grained Al-2 wt%Cu alloy severely deformed by accumulative roll bonding,” Sci. Technol. Adv. Mater., Vol. 5, pp. 173-180, 2004. [121] Z. P. Xing, S. B. Kang, and H. W. Kim, “Softening behavior of 8011 alloy produced by accumulative roll bonding process,” Scripta Mater., Vol. 45, pp 597-604, 2001. [122] A. Misra, H. Kung, and J. D. Embury, “Preface to the viewpoint set on: Deformation and stability of nanoscale metallic multilayers,” Scripta Mater., Vol. 50, pp. 707-710, 2004. [123] J. D. Embury and C. W. Sinelair, ” The mechanical properties of fine-scale two-phase materials,” Mater. Sci. Eng. A, Vol. 319-321, pp. 37-45, 2001. [124] R. J. Hebert and J. H. Perepezko, “Deformation-induced synthesis and structural transformations of metallic multilayers,” Scripta Mater., Vol. 50, pp. 807-812, 2004. [125] S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai, “Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process,” Scripta Mater., Vol. 46, pp. 281-285, 2002. [126] S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, ” Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding,” Mater. Sci. Eng. A, Vol. 325, pp. 228-235, 2002. [127] R. A. Vandermeer and D. J. Jensen, “Recrystallization in hot vs. cold deformed commercial aluminum: a microstructure path comparison,” Acta Mater., Vol. 51, pp. 3005-3018, 2003. [128] N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, and Y. Minamino, ” Aging behavior of ultrafine grained Al-2 wt%Cu alloy severely deformed by accumulative roll bonding,” Sci. Technol. Adv. Mater., Vol. 5, pp. 173-180, 2004. [129] F. Bordeaux and A. R. Yavari, ” Formation of amorphous phase by solid state reaction in elemental composites prepared by cold rolling,” Mater. Sci. Eng. A, Vol. 97, pp. 129-132, 1988. [130] R. B. Schwarz and W. L. Johnson, “Remarks on solid state amorphizing transformations,” J. Less-Common Met., Vol. 140, pp. 1-6, 1988. [131] R. B. Schwarz, K. L. Wong, and W. L. Johnson, “Study of amorphous alloys of Au with group III A elements (Y AND La) formed by a solid-state diffusion reaction,” J. Non-Cryst. Solids., Vol. 61-62, pp. 129-134, 1983. [132] M. Demura, Y. Suga, K. Kishida, O. Umezawa. E. P. George, and T. Hirano, ” Fabrication of Ni3Al thin foil by cold-rolling,” Intermetallics, Vol. 9, pp.157-167, 2001. [133] A. A.-Hajry, “Fast amorphization reaction in ZrNi system prepared by mechanical alloying,” Mater. Res. Bull. Vol. 35, pp. 1989-1998, 2000. [134] L. Schuiz, Proceedings of the 51h International Conference on Rapidly Quenched Metals, edited by S.Steeb and H. Warlimant, North-Holl and Amsterdam, pp. 1585-1588, 1982. [135] W. K. Warburton and D. Turnbull, Diffusion in Solids, Recent Developments Academic, New York, p.171, 1975. [136] Z. Radi, J. L. Lábár, and P. B. Barna, ” Diffusion coefficient of Al in metastable, amorphous Al–Pt phase,” Vol. 73, pp. 3220-3222, 1998. [137] R. L. Fleischer, R. S .Gilmore, and R. J. Zabala, ” Elastic moduli of polycrystalline, high-temperature binary intermetallic compounds,” Acta. Metall., Vol. 37, pp. 2801-2803, 1989. [138] A. R. Yavari and D. Turnbull, “Effect of composition and thermal treatment on the yield stress and resistivity of Pb(Au) alloys,” Acta Metall., Vol. 30, pp. 1171-1176, 1982. [139] C. Michaelsen, G. Lucadamo, and K. Barmak, J. Appl. Phys. Vol. 80, p.6689, 1996. [140] K. Barmak, C. Michaelsen, and G. Lucadamo, ” Reactive phase formation in sputter-deposited Ni/Al multilayer thin films,” J. Mater. Res., Vol. 12, pp. 133-146, 1997. [141] M. Atzmon, “In situ thermal observation of explosive compound-formation reaction during mechanical alloying,” Phys. Rev. Lett., Vol. 6, pp. 487-490, 1990. [142] F. Cardellini, G. Mazzone, and A. V. Antisari, “Solid state reactions and microstructural evolution of Al-Ni powders during high-energy ball milling,” Acta Mater., Vol. 44, pp. 1511-1517, 1996. [143] S. Orimo and H. Fujii, ”Hydriding properties of nanostructured Mg–x at.%Ni (x = 33-50) with a different amount of amorphous MgNi,” Int. J. Hydrogen Energy, Vol. 24, pp. 933-937, 1999. [144] H. Sieber and J. H. Perepezko, “Direct formation of the AlNi3 phase in Al-75Ni cold rolled multilayers,” J. Mater. Sci. Lett., Vol. 18, pp. 1449-1551, 1999. [145] L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino, “Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing,” Acta Mater., Vol. 23, pp. 1901-1914, 1999. [146] M. Richert, Q. Liu, and N. Hansen, ”Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion-compression,” Mater. Sci. Eng. A, Vol. 260, pp. 275-283, 1988. [147] R.Z.Valiev, N. A. Krasilnikov, and N. K. Tsenev, “Plastic deformation of alloys with submicron-grained structure,” Mater. Sci. Eng. A, Vol. 137, pp. 35-40, 1991. [148] M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, “Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries,” Acta Mater., Vol. 47, pp. 2047-2057, 1999. [149] D. A. Jones, Principles and Prevention of corrosion, 2nd ed., Prentice Hall, Upper Saddle River, 2001. [150] T. C. Chang, J. Y. Wang, C. M. O, and S. Lee, ” Grain refining of magnesium alloy AZ31 by rolling, ” J. Mater. Process. Technol., Vol. 140, pp. 588-591, 2003. [151] Z. Y. Jiang and A. K. Tieu, “A simulation of three-dimensional metal rolling processes by rigid–plastic finite element method,” J. Mater. Process. Technol., Vol. 112, pp. 144-151, 2001. [152] J. Wang, and C. Chen, ”On the optimization of a rolling-force model for a hot strip finishing line,” Vol. 46, pp. 527-531, 2007. [153] R. E. R.-Hill, Physical Metallurgy Principles, 3rd ed., International Thomson Publishing, Boston, pp. 136-139, 1994. [154] S. Kleiner, O. Beffort, A. Wahlen, and P. J. Uggowitzer, ”Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg–Al alloys,” J. Light Met., Vol. 2, pp. 277-280, 2002. [155] Y. Li, P. Liu, J. Wang, and H. Ma, ”XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials,” Vacuum, Vol. 82, pp. 15-19, 2007. [156] W. F. Gale and T. C. Totemeier, Smithells Metals Preference Book. 8th ed., B.-Heinemann, British, Chap. 11, pp. 1-7, 2004. [157] E. M. T. Njiokep, M. Salomon, and H. Methrer, “Growth of Intermetallic Phases in the Al-Mg Systenm,” Defect Diffusion Forum, Vol. 194-199, pp. 1581-1586, 2001. [158] X. Liu, J. Cui, Y. Guo, X. Wu, and J. Zhang, “Influence of alternative magnetic field on the diffusion of Al and Mg,” J. Mater. Sci. Technol., Vol. 20, pp. 457-459, 2004. [159] Z. F. Li, J. Dong, X. Q. Zeng, C. Lu, W. J. Ding, and Z. M. Ren, ” Influence of strong static magnetic field on intermediate phase growth in Mg-Al diffusion couple,” J. Alloys Compd., Vol. 440, pp. 132-136, 2007. [160] H. O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, New Jersey, U.S.A., p. 11, 1996. [161] J. P. Schaffer, A. Saxena, T. H. Sanders, and S. B. Warner, The Science and Design of Engineering Materials, 2nd ed., The McGraw-Hill Companies, INC., U.S.A., p. 773, 1999. [162] M. C. Chen, H. C. Hsieh, Weite Wu, ” The evolution of microstructure and mechanical properties during accumulative roll bonding of Al/Mg composite,” J. Alloys compd., Vol. 416, pp. 169-172, 2006. [163] B. D. Cullity and S. R. Stock, ”Elemtnts of X-ray Diffusion,” 3rd ed., Upper Saddle River, New Jersey, p. 170, 2001. [164] Y. D. Yagodkin, G. V. Vekilova, and R. S. Mungalov, “X-ray diffraction method of grain size measurement,” Mate. Sci. Forum, Vol. 321-324, pp. 133-136, 2000. [165] J. A. d. Valle, M. T. P.-Prado, and O. A. Ruano, “Texture evolution during large-strain hot rolling of the Mg AZ61 alloy,” Mater. Sci. Eng. A, Vol. 355, pp. 68-78, 2003. [166] R. E. R.-Hill, Physical Metallurgy Principles, 3rd ed., International Thomson Publishing, Boston, pp. 136-139, 1994. [167] G.. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, ” A model for the inverse Hall–Petch relation of nanocrystalline materials,” Mater. Sci. Eng. A, Vol. 409, pp. 243-248, 2005. [168] H. Matsumoto, S. Watanabe, and S. Hanada, “Fabrication of pure Al/Mg–Li alloy clad plate and its mechanical properties,” J. Mater. Process. Techno., Vol. 169, pp. 9-15, 2005. [169] Y. Ito, N. Tsuji, Y. Saito, H. Utsunomiya, and T. Sakai, “Change in Microstructure and Mechanical Properties of Ultra-Fine Grained Aluminum during Annealing,” J. Jpn. Inst. Met., Vol. 64, pp. 429-437, 2000. [170] W. R. Osório, C. M. Freire, and A. Garcia, “The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings,” Mater. Sci. Eng. A, Vol. 402, pp. 22-32, 2005. [171] D. A. Jones, Principles and prevention of corrosion, 3nd ed., Upper Saddle River, NJ, 80-84, 1996. [172] R. Mishra and R. Balasubramaniam, “Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel,” Corrosion Sci., Vol. 46, pp. 3019-3029, 2004. [173] N. G. Fontana and N. D. Greene, “Corrosion Engineering,” 3rd ed. L. Laura, McGraw-Hill, pp. 54-68, 1986. [174] D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentic-Hall, U.S.A., pp. 209-220, 1996. [175] Z. S. Smialowska, “Pitting corrosion of aluminum,” Corrosion Sci., Vol. 41, pp. 1743-1767, 1999. [176] M. Jönsson, D. Persson, and D. Thierry, “Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D,” Corrosion Sci., Vol. 49, pp. 1540-1558, 2007.
摘要: 金屬是目前世界上使用率最高的材料,大多數的金屬具有優良的加工性、成形性以及強度等特性,而透過不同的處理方式更可以金屬材料達到極為優異的物理以及機械性質。然而單一形狀或材質的金屬往往不能符合實際上需要,使得雙金屬的研究和應用逐漸受到重視,所謂雙金屬指的是由兩種不同性能的金屬加以複合而成,使其兼具兩種金屬的特性。而鋁合金與鎂合金在結構應用上有其優點及缺點,本論文擬採用固態接合與熱加工(hot working)的方式達到積層堆疊的目標,目的在於獲取兩種材料的優點而儘量摒除彼此的缺點。 累積軋延製程屬於一種將金屬板材做劇烈塑性變形的加工方式而不改變其金屬板材的原始厚度尺寸,此製程可以產製極細晶粒結構並具有高強度之金屬材料。晶粒細化的結果意味著著機械性質提高。本研究使用累積軋研製程製備Al (ASM-1100) / Mg (AZ31) 複合金屬塊材,將Al-Mg重疊加以輥軋的方式加工使變薄增長,再將其折疊,後施以軋延,如此反覆數次將可令其組織細化,達到強化的目的。 經過四次的循環軋延過程,24層之 Al / Mg 複合金屬塊材成功的製備。由於 Al 與 Mg 原子相互擴散,Al / Mg 層狀複合金屬之界面在經過多道次的軋延後具有優良的接合性質。經過四次的循環軋延後界面形成一擴散區域,此擴散區會形成Al3Mg2 與 Al12Mg17 之介金屬化合物,並利用EPMA做成份-深度曲線分析。Al(Mg)、 Mg(Al)、 Al3Mg2 與 Al12Mg17 之間存在 Al(Mg) / Al3Mg2、 Al3Mg2 / Al12Mg17 與 Al12Mg17/ Mg(Al) 等三個界面。Al3Mg2 與 Al12Mg17 兩相活化能分別為 72 與 167 kJ/mol,而擴散係數分別為 3.1×10-8 與 0.092 cm2/s。當退火溫度增加到 673 K時,相互擴散係數 Dβ 與 Dγ 個別增加到 5.24 cm2/s 與 0.7 cm2/s。 鋁與鎂晶粒尺寸隨著累積軋延製程分別因軋延次數增加至第四次循環而達到約926 nm與 1024 nm。鋁與鎂的硬度值隨著累積軋延次數增加至第四循環時硬度增加至Hv 42與Hv 91。在拉伸試驗中,第三次循環軋延有最高的抗拉強度117 MPa;在第四次循環軋延之延伸量最低。 腐蝕試驗結果,第二次循環軋延試片具有最佳之抗腐蝕能力,其腐蝕電流(Icorr )、電位(Ecorr )分別為 6.757 μA/cm2 與 -1.047V,腐蝕阻抗 (Rp)為 0.378 MΩ。第四次循環軋延試片在累積軋延製程中,其抗腐蝕性最差。腐蝕現象種類於第一次循環至第四次循環軋延試片具有孔蝕現象,而伽凡尼腐蝕僅在第三次循環與第四次循環試片中發現。
Metals were widely used in the world for their good characters of working property, forming property, and toughness. Metal materials can reach to ultra-perfect physics and mechanical properties by different treating processes. Sometimes the single metal can not offer the application that we need, so it leads the bi-metal or composite to become more expectative. The bi-metal means the material composed with two kinds of metals with different properties. This project will use the methods of solid state joining and hot working processes to get the purpose of accumulative layers, and it will obtain the advantage and eliminate the disadvantage properties of each other. The snap-stack working to reduplicate the Mg-Al metal is chosen and then thinner and longer by executing rolling and repeating the processes. Accumulative roll bonding (ARB) involves the severe plastic deformation of sheet metal without changing the original sheet dimensions, which can produce high strength metals with ultra-fine grained microstructure. Mechanical properties are significantly increased due to the altered ultra-fine grain microstructure. In this study, the ARB process is used with the snap-stack working to reduplicate Al (ASM-1100) / Mg (AZ31). The procedure entails repeated roll-bonding two sheets of metal, of equal dimensions. Alloy is chosen and then through repeated rolling and deformation made, thinner and longer. Samples underwent four rolling and stacking cycles four times, which produced a 24-layer structure. The ARB process creates a multilayer compound between Al/Mg layers with excellent bonding characteristics. The excellent bonding characteristics were due to atomic diffusion. The diffusion zone was obtained after four cycles of the ARB process. The layers of the intermetallic compounds Al3Mg2 and Al12Mg17 were observed in the diffusion zone. The composition-depth curves of the diffusion zone were determined by electron microprobe analyses of the IMCs. The three interfaces of Al(Mg)/Al3Mg2, Al3Mg2/Al12Mg17 and Al12Mg17/Mg(Al) were identified. Growth constants k of Al3Mg2 was higher than Al12Mg17. The pertaining activation enthalpies were 72 and 167 KJ mol-1. Interdiffusion coefficient Dβ and Dγ were increasing to 5.24 cm2/s and 0.7 cm2/s with the temperature increasing to 673 K. The grain sizes of Al and Mg alloys were reached to 926 nm and 1024 nm after fourth cycle. The hardness of the Al and Mg alloys were raised to Hv42 and Hv91 after fourth cycles. The third cycle had maximum ultimate tensile strength (UTS) with 117 MPa and the fourth cycle had minimum elongation. The grain refined and the Mg that was protect perfectly by Al, result in the 2 cycles specimen had the best corrosion resistance which Icorr, Ecorr, and Rp were 6.757 μA/cm2, -1.047V, and 0.378 MΩ, respectively. Pitting corrosion occurred in all cycle of ARB specimens. Galvanic corrosion was only appeared on 3 and 4 cycles, because the minority of Mg was exposed to the corrosive surface.
URI: http://hdl.handle.net/11455/10151
其他識別: U0005-0906200611392300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0906200611392300
顯示於類別:材料科學與工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。