Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10157
標題: 白色發光二極體應用於液晶顯示器之特性分析
Characterization of White Light Emitting Diodes for Liquid Crystal Display
作者: 蔡振豪
Tsai, Chen-Hao
關鍵字: Light Emitting Diode
白色發光二極體
Liquid Crystal Display
Color
White
液晶顯示器
色彩學
白平衡
出版社: 材料科學與工程學系所
引用: [1] S. L. Tan, N. Loukianova, S. Ma, J. Chen, G. Binashch, and L. D. Chan, “ 7” and 3.5” Active Matrix TFT Automotive Displays with Mercury-Free Backlight, ” in Soc. Inf. Display Tech. Dig., 2004. [2] P. Weindorf, “ AMLCD LED Backlighting for Automotive Displays, ” in Soc. Inf. Display Tech. Dig., pp.33-40, 2002. [3] H. Ohtsuki, K. Nakanishi, A. Mori, S. Sakai, S. Yachi, and W. Timmers, “ 18.1-inch XGA TFT-LCD with Wide Color Reproduction using High Power LED-Backlighting, ” in Soc. Inf. Display Tech. Dig., pp.1154-1157, 2002. [4] 大田 登,基礎色彩在現工程,全華書局,民國92年。 [5] 李陽世,色彩技術原理與應用,永大書局,民國89年。 [6] R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative Comparison of Color Performances Between IPS and MVA LCDs,” J. Display Technol., Vol.2, No.4, pp. 319-326, Dec., 2006. [7] Lu, Q. Hong, Z. Ge, and S. T. Wu, “ Color Shift Reduction of a Multi-Domain IPS-LCD using RGB-LED Backlight,” Opt. Expr., Vol.14, pp. 6243-6252, Jun., 2006. [8] 紀國鐘、鄭晃忠,液晶顯示器技術手冊,經濟部技術處發行。 [9] S. Suzuki, and H. Takizawa, “ Characterization of Color Shift and Gray scale for Wide-Viewing-Angle AM-LCD Technologies, ” in Soc. Inf. Display Tech. Dig., pp.107-110, 2002. [10] K. C. Ho, S. L. Wright, C. Cai, A. Lien, and J.E. Anderson, “ Colorimetric Characterization of Wide-Viewing Angle Technologies, ” in Soc. Inf. Display Tech. Dig., pp.184-187, 2000. [11] H. Mori, and Y. Shinagawa, “ The Nature and Characteristics of Wide View Film, ” in Soc. Inf. Display Tech. Dig., 2001. [12] H. Mori, Y. Itoh, M. Murayama, M. Ogawa, Y. Yabuki, and Y. Shinagawa, “ New TACless Wide-View Film for TFT-LCDs, ” in Soc. Inf. Display Tech. Dig., pp.551-553, 2000. [13] D. Klement, K. Tarumi, H. Numata, H. Ichinose, and S. Neamura, “ Liquid Crystal Material Development of IPS-TFT Displays, ” in Sco. Inf. Display Tech. Dig., 1998. [14] Y. Mishima, T. Nakayama, N. Suzuki, M. Ohta, S. Endon, Y. Iwakabe, and H. Kagawa, “ Development of a 19-in.-diagonal UXGA Super TFT-LCM Applied with Super-IPS Technology, ” in Soc. In. Display Tech. Dig., pp.260-263, 2000.[15] K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “ Materials and Components Optimization for IPS TFT-LCDs, ” in Soc. Inf. Display Tech. Dig., 1998. [16] Y. Koile, and K. Okamoto, “ Super High Quality MVA-TFT Liquid Crystal Displays, ” Fujitsu Sci. Tech. J., pp.221-228, 1999. [17] C. L. Kuo, C. K. Wei, M. Suzuki, W. T. Lin, W. Y. Li, and L. Y. Chen,” Large-area TFT-LCD using MVA-LCD Mode for TV Applications, ” in Soc. Inf. Display Tech. Dig., pp.1200-1203, 2003. [18] 許榮宗,“白光LED製作技術走勢”,工業材料,第220期,第143-154頁,94年4月。 [19] 姚柏宏,“LED光源模組發展現況與機會”,工業材料,第221期,第87-92頁,94年5月。 [20] 劉如熹、林益山、廖秋峰,“從藍光紫外光到白光”,工業材料,第220期,第137-142頁,94年4月。 [21] 陳秋伶、黃勝邦、高弘毅,“高效率白光LED技術簡介”,工業材料,第208期,第124-130頁,93年4月。 [22] 羅俊仁,“白光LED螢光粉”,工業材料,第208期,第150-155頁,93年4月。 [23] 趙文軒、葉耀宗、吳仁傑、黃天桓、王麗萍,“白光LED氮化物螢光粉之發展現況”,工業材料,第240期,第115-125頁,95年12月。 [24] 康佳正、劉如熹、廖秋峰,“可被UV LED激發之螢光體介紹”,工業材料,第232期,第144-154頁,95年4月。 [25] A. Perduijn, S. Krijer, J. Claessens, N. Kaito, T. Yagi, S. T. Hsu, M. Sakakibara, T. Ito, and S. Okada,“ Light Output Feedback Solution for RGB LED Backlight Applications, ” in Soc. Inf. Display Tech. Dig., 2000. [26] 邱正茂、賴詩文、賴宏仁,“LCD-TV背光源的發展現況─誰能勝出”,工業材料,第221期,第72-86頁,94年5月。 [27] S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, “ Wide Gamut, high brightness multiple primaries single panel projection display, ” in Soc. Inf. Display Tech. Dig., 2003. [28] S. Okubo, T. Otani, “ New LCD Technologies Boost Color, Fidelity, Response Time, ” Nikkei Electron Asia, Aug., 2004. [29] T. Otani, “ LED Backlights Boost LCD TV color, ” Nikkei Electron Asia, pp.22-26, Mar., 2005. [30] Koichiro Kakinuma, “ Technology of Wide Color Gamut Backlight with Light-Emitting Diode for Liquid Crystal Display Television, ” Japanese Journal of Applied Physics, Vol. 45, No.5B, pp.4330-4334, 2006. [31] S. Sakai, A. Mori, K. Ishiquchi, K. Kobayashi, T. Kokagawa, T. Sakamoto, and T. Yoneda, “ A Thin LED Backlight System with High Efficiency for Backlighting 22-in. TFT-LCDs, ” in Soc. Inf. Display Tech. Dig., pp.1218-1221, 2004. [32] R. S. West, H. Konijn, W. Sillevis-Smitt, S. Kuppens, N. Pfeffer, Y. Martynov, Y. Takkaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “ High Brightness Direct LED Backlight for LCD-TV, ” in Soc. Inf. Display Tech. Dig., 2003. [33] T. Yoshihara, T. Makino, S. Tadaki, H. Shiroto, Y. Kiyota, S. Kasahara, and K. Betsui, “ Super-High-Resolution FLC Display Based on Field Sequential Color Method with Low Driving Voltage, ” in Soc. Inf. Display Tech. Dig., pp.1276-1279, 2003. [34] N. Koma, T. Miyashita, T. Uchida, and N. Mitani, “ Color Field Sequential LCD Using an OCB-TFT-LCD, ” in Soc. Inf. Display Tech. Dig., pp.632-635, 2000. [35] T. Takahashi, H. Furue, M. Shikada, N. Matsuda, T. Miyama, and S. Kobayashi, “ Preliminary Study of Field Sequential Fullcolor Liquid Crystal Display using Polymer Stabilized Ferroelectric Liquid Crystal Display, ” Jpn. J. Appl. Phys., Vol.38, pp.534-536, 1999. [36] 郭惠隆,“鐵電性液晶家族及其電光性能評析”,工業材料,第234期,第167-174頁,95年6月。 [37] F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “ Color Sequential LCD Based on OCB with an LED Backlight, ” in Soc. Inf. Display Tech. Dig., pp.1180-1183, 2000. [38] J. J. Yoo, J. H. Woo, H. H. Shin, and C. R. Seo, “ Side Light Type Field Sequential Color LCD Using Divided Light Guide Plates, ” in Soc. Inf. Display Tech. Dig., pp.180-183, 2003. [39] G. Doell, and J. Rink, “ Mecury Free Excimer Lamp for Automotive and Office Automation, ” in Soc. Inf. Display Tech. Dig., pp.1146-1149, 2002. [40] C. Huh, W. J. Schaff, and L. F. Eastman, “Temperature Dependence of Performance of InGaN/GaN MQW LEDs With Different Indium Compositions,”IEEE Electron device letters, vol. 25, no. 2, pp. 61-63, 2004. [41] J. S. Kim, A. K. Kwon, Y. H. Park, J. C. Choi, H. L. park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors for white LED, ” Journal of Luminescence, pp.583-586, 2007. [42] S. Muthu, F. J. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,”IEEE Journal on selected topics in quantum electronics, vol. 8, no. 2, pp. 333-338, 2002. [43] I. Ashdown, S. Robinson, and M. Salsbury, “ Binning and Filtering: The Six-Color Solution, ” Proceedings of SPIE, Vol. 6337, 2006.
摘要: 本論文利用光譜分析儀量測不同背光源與液晶面板搭配的顯示特性,著重在色彩方面的探討,所使用的背光源有三種不同的白光LED:1. 藍光晶粒激發黃色YAG螢光粉之白光LED( Blue-YAG );2. UV光晶粒激發R,G,B三色螢光粉之白光LED( UV-RGB );3. R,G,B三色晶粒混成白光之白光LED( RGB WLED ),以及傳統的冷陰極螢光燈管( CCFL )。在色彩的分析比較上,首先探討的是背光源的發光光譜特性,並以不同的驅動條件及不同的環境溫度作背光源的色度變異性進行探討,接著搭配液晶顯示器之彩色濾光片的濾光特性,分析兩者搭配所呈現之色彩特性。在背光源的發光特性方面,傳統的CCFL在低溫時由於燈管內的水銀蒸氣壓下降,導致發光強度急據下降,且顏色偏移嚴重,故搭載CCFL為背光源之液晶面板不適用於操作溫度低於0℃之環境;然而使用白光LED則在低溫時有較常溫更佳之發光特性,故可有效改善液晶面板的低溫環境顯示效果。在白光LED光源顏色的穩定性方面,Blue-YAG由於藍光晶粒與黃色螢光粉之發光效率差異頗大,故隨著注入電流及環境溫度變化的色偏很明顯;相較於UV-RGB,由於UV光並未參與白光混光,且R,G,B三色螢光粉之發光效率相當,故隨著注入電流及環境溫度變化的色偏很輕微;另外RGB WLED則可藉由個別調整三顆晶粒之亮度值來達到穩定之白光光源。在背光源搭配上液晶面板的色彩呈現方面,由於RGB WLED之發光光譜與液晶面板內彩色濾光片之濾光光譜搭配性佳,故以RGB WLED作液晶面板之背光源時,可得到最佳的顯示效果,最大的色域面積( color gamut )。
In this thesis, the performances of liquid crystal display (LCD) with different backlight light sources were analyzed by the optical spectrometer. The backlight sources included three different kinds of white light-emitting diodes (LEDs) and a traditional cold cathode fluorescent lamp (CCFL). Three kinds of white-LED are listed below: 1. YAG phosphor was pumped by the blue LED ( Blue-YAG ); 2. The R,G,B phosphors were pumped by the UV LED ( UV-RGB ); 3. The white light mixed by R,G, B LEDs ( RGB WLED ). First, the characteristic of optical property in LCD panels and emission spectrums of backlight module were discussed detail. The optical properties of backlight module were analyzed by varying the current driving conditions and operation temperature. In traditional CCFL light source, the emission intensity was decayed rapidly and color point the CIE coordinate was shifted at low operating temperature caused by the decreasing of the mercury vapor pressure. And the LCD Panel with CCFL backlight source was not suitable for the operating at low temperature, especially when the temperature was below 0℃. In the other hand, the emission property of the white-LED operating at lower temperature had higher stability of emission intensity compared to CCFL light source. The optical emission properties of Blue-YAG LED varying the operation temperature and current were affected by different emission characteristics between blue light from InGaN/GaN quantum well structure and yellow light from the YAG phosphor. The UV white light source was more stable than Blue-YAG which was caused by the UV light from the quantum well structure was not participated in the white light mixing and the emission efficiency of R, G, B phosphors were similar. The stable white light emission of RGB WLED can adjust to the individual RGB LED intensity by varying the operating current. The color performances of LCD panel with the different backlight sources were estimated by comparing the emission spectrums of WLED and the transmission spectrums of color filter of the LCD panel to have the best optical performance and the largest color gamut in CIE coordinate.
URI: http://hdl.handle.net/11455/10157
其他識別: U0005-1108200602305100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200602305100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.