Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10159
標題: Diffusion Barrier Effect of Nickel and Cobalt Layers between Bismuth Telluride and Copper and Their Influence on Thermoelectric Properties
碲化鉍與銅間鎳與鈷層之擴散阻障效果以及其對熱電特性之影響
作者: 曾紹瑜
Tseng, Shao-Yu
關鍵字: Nickel(Ni) diffusion barrier
鎳擴散阻障層
Cobalt(Co) diffusion barrier
Bismuth telluride
RF magnetron sputter
Thermoelectric properties
鈷擴散阻障層
碲化鉍
射頻磁控濺鍍法
熱電特性
出版社: 材料科學與工程學系所
引用: 參考文獻 [1] S. Fujimoto, S. Sano and T. Kajitani, “Analysis of Diffusion Mechanism of Cu in Polycrystalline Bi2Te3-Based Alloy with the Aging of Electrical Conductivity”, Japanese Journal of Applied Physics, 46, (2007), 5033-5039. [2] 吳文發與黃麒峰,“銅製程之擴散阻障層”,奈米通訊,第六卷,第四期,(1999),30-32。 [3] 吳文發、歐耿良、吳其昌與周長彬,“電漿處理的鉭擴散阻障層在銅製程的應用”,奈米通訊,第九卷,第三期,(2002),19-23。 [4] V. I. Fistul, “Heavily Doped Semiconductors”, Plenum, New York, (1969). [5] D. M. Rowe and C. M. Bhandari, “Modern Thermoelectrics”, Holt Saunders, London, (1983). [6] D. M. Rowe, “CRC Handbook of Thermoelectrics”, CRC Press Boca Raton London New York Washington, (1995). [7] J. C. Peltier, “Nouvelles experiences sur la caloricite des courans electrique”, Ann. Chim. et Phys., 56, (1834), 371. [8] 劉恩科、朱秉升與羅普生,“半導體物理學(第七版)”,電子工業出版社,北京,(2008)。 [9] W. Thomson, “Account of electrodynamic qualities of metal”, Philos. Mag. , 146, (1854), 62 [10] 施孝東,“電鍍碲化鉍之片狀結構成長機制研究”,清華大學材料科學與工程學系研究所,(2009),5。 [11] H. J. Noh, H. Koh, S. J. Oh and J. H. Park, “Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy”, A Letters Journal Exploring the Frontiers of Physics,81, (2008), 57006.   [12] 何靖雯“摻雜濃度對矽鍺薄膜熱電及氫感測特性之影響”,中興大學材料科學與工程學系研究所,(2010),9。 [13] J. A. Thornton, “High rate thick film growth”, Annual Review of Materials Science, 7, (1997), 239-260. [14] 柯賢文,“表面與薄膜處理技術”,全華圖書,(2005),5-4~5-11。 [15] Milton. Ohring, “Materials Science of Thin Films, Second Edition”, Academic Press, San Diego, (2002), 497-507. [16] R. W. Balluffi and J. M. Blakely, “Special aspects of diffusion in thin films”, Thin Solid Films, 25, (1975), 363-392. [17] Z. H. Cao, K. Hu and X. K. Meng, “Diffusion barrier properties of amorphous and nanocrystalline Ta films for Cu interconnects”, Journal of Applied Physics, 106, (2009), 113513. [18] N. A. Giostein, “Diffusion”, American Society for Matals, Metal Park, OH, (1973), 261. [19] J. Nazon, B. Fraisse, J. Sarradin, S.G. Fries, J.C. Tedenac, “Copper diffusion in TaN-based thin layers”, Applied Surface Science, 254, (2008), 5670–5674. [20] R. M. Walser and R. W. Bene, “First phase nucleation in silicon-transition-metal planar interfaces”, Appl. Phys. Lett. , 28, 10 (1976), 624-625. [21] R. Pretorius, C. C. Theron, A. Vantomme and J. M. Mayer, “Compound Phase Formation in Thin Film Structures”, 24, 1 (1999), 1-62. [22] Wen P. Lin, Pin J. Wang, and Chin C. Lee, “Bonding/Barrier Layers on Bismuth Telluride (Bi2Te3) for High Temperature Applications”, Electronic Components and Technology Conference, 10, (2010), 447-450. [23] David R. Lid , “CRC Handbook of Chemistry and Physics”, CRC Press Boca Raton, Florida, (2009).   [24] M. H. Francombe, “Structure-cell data and expansion coefficients of bismuth telluride”, British Journal of Applied Physics, 9,(1958), 415-418. [25] Fujimoto, S. Sano and T. Kajitani, “Analysis of Diffusion Mechanism of Cu in Polycrystalline Bi2Te3-Based Alloy with the Aging of Electrical Conductivity”, Japanese Journal of Applied Physics, 46, (2007), 5033–5039. [26] R. O. Carlson, “Anisotropic diffusion of copper into bismuth telluride”, Journal of Physics and Chemistry of Solids, 13, (1960), 65-70. [27] Y. C. Lan, D. Z. Wang, G. Chen and Z. F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3¬ and n-type Bi2(Te,Se)3 thermoelectric materials”, APPLIED PHYSICS LETTERS, 92, (2008), 101910. [28] O. D. Iyore, T. H. Lee, R. P. Gupta, J. B. White, H. N. Alshareef, M. J. Kim and B.E. Gnade, “Interface characterization of nickel contacts to bulk bismuth tellurium selenide”, Surf. Interface Anal. , 41, (2009), 440–444. [29] R. P. Gupta, O. D. Iyore, K. Xiong, J. B. White and Kyeongjae Cho, “Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices”, Electrochemical and Solid-State Letters, 12, 10, (2009), H395-H397. [30] Charles E. Wickersham, “Target Assembly for Sputtering Magnetic Material”, United States Patent, 14, (1986), 4564435. [31] A. N. Saidel, W. K. Prokofjew and S. M. Raiski, “Tables of Spectrum Lines”, VEB VERLAG TECHNIK BERLIN, (1961). [32] Rahul P. Gupta, K. Xiong, J. B. White, Kyeongjae Cho, H. N. Alshareef and B. E. Gnadea, “Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization”, Journal of The Electrochemical Society, 157, 6, (2010), H666-H670.   [33] William D. Callister, Jr, “Fundamentals of Materials Science and Engineering”, John Wiley & Sons, Inc. , 472-492. [34] Chien-Neng Liao, Ching-Hua Lee and Wen-Jin Chen, “Effect of Interfacial Compound Formation on Contact Resistivity of Soldered Junctions Between Bismuth Telluride-Based Thermoelements and Copper”, Electrochemical and Solid-State Letters, 10, 9, (2007), P23-P25. [35] O. Madelung, “LANDOLT-BORNSTEIN”, Numerical Data and Functional Relationships in Science and Technology, Diffusion in Solid Metals and alloys, 26, Berlin, (1990), P. 132 and P. 138.
摘要: 本實驗利用射頻磁控濺鍍法在Bi2Te3塊材上分別沉積Ni與Co擴散阻障層及Cu層,製備出Cu/Ni/Bi2Te3/Ni/Cu與Cu/Co/Bi2Te3/Co/Cu塊材,在200°C環境下施以不同熱處理時間1、2、3、4、16小時及1、4、8、16小時為實驗參數。 本實驗沉積薄膜各100 nm且為已產生結晶化現象,經熱處理後結晶性增強且產生化合物。NiTe2於31.6°及33.3°出現(011)與(002)的特徵峰;CoTe2於31.8°及33.1°出現(111)及(012)特徵峰。經4小時熱處理後之Ni擴散阻障層已失效,並與基材產生化合物;而Co擴散阻障層經熱處理16小時仍可觀察到最大為72 at%的Co元素存在。 Ni擴散阻障層經1小時熱處理之電導率為290±2 S/cm、最大Seebeck係數為71±1 μV/K,最佳功率因子為1.48×10-4 W/K2m;Co擴散阻障層經經1小時熱處理之電導率為381±5 S/cm、最大Seebeck係數為51±1.8 μV/K,最佳功率因子為9.94×10-5 W/K2m。
In this study, Ni、Co diffusion barriers and Cu film were deposited onto Bi2Te3 bulk by RF magnetron sputter. The cross section of sample are Cu/Ni/Bi2Te3/Ni/Cu and Cu/Co/Bi2Te3/Co/Cu, respectively. Then Annealed at 200°C for 1、2、3、4、16 hours and 1、4、8、16 hours. The crystallized films were 100 nm, respectively., Enhanced crystallization and the compounds produced after heat treatment. The characteristic peak of NiTe2 were (011) and (002) at 31.86°and 33.3°. Ni diffusion barrier failed after annealed 4 hours, as obtained using depth profiling. Co diffusion barrier formed a more stable interface with Bi2Te3, even though annealed after 16 hours. The electric conductivity of 290±2 S/cm, the optimum Seebeck coefficient of 71±1 μV/K, and the optimum power factor of 1.48×10-4 W/K2m for Ni diffusion barrier after annealed 1 hour. The electric conductivity of 381±5 S/cm, the optimum Seebeck coefficient of 51±1.8 μV/K, and the optimum power factor of 9.94×10-5 W/K2m for Co diffusion barrier after annealed 1 hour.
URI: http://hdl.handle.net/11455/10159
其他識別: U0005-1407201120392200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407201120392200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.