Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10163
標題: 309系列手銲條 應用於超高強度鋼板對接之研究
The study of AISI 309 series SMAW electrode apply to butt joining with ultra high strength steel
作者: 翁新凱
Weng, Shin-Kai
關鍵字: 309 serial stainless steel electrode
309系列不銹鋼銲條
ultra high strength steel
butt join
超高強度鋼板
對接
出版社: 材料科學與工程學系所
引用: [1] J.S. Chen, C.J. Hu , and P.Y. Lee, “Ballistic Performance and Microstructure of Modified Rolled Homogeneous Armor Steel,” Journal of the Chinese Institute of Engineers, Vol.25, No.1, pp.99-107, 2002. [2] 楊振平,“淺析超高強度鋼的銲接” ,安裝,第11期,第47-48頁,民國95年。 [3] Y.C. Lin and P.Y. Chen, “Effect of Nitrogen Content and Retained Ferrite on the Residual Stress in Austenitic Stainless Steel Weldments,” Material Science and Engineering A, Vol.42, No.4, pp.165-171, 2001. [4] 陳俊雄、薄慧雲、李訓杰, “抗彈金屬材料” ,新新季刊,第三十一卷,第四期,第70-76頁,民國92年。 [5] C.D. Little and P.M. Machmeier, “High Strength Fracture Resistant Weldable Steels,” United States Patent, No.4,076,525, 1978. [6] General Dynamics Land Systems. "Improved Hardness RHA Weldability and Material Property Testing," Report 5T-9l-23272. Contract No.DAALO4-9l-C-0040, 1994. [7] 蔡嘉培, “Ti-6Al-4V 合金超塑性成型後機械性質之研究” ,國立中央大學機械系碩士論文,民國80年。 [8] 林英志, “晶粒細化與熱處理對沃斯田鐵相鐵鋁錳碳合金顯微組織及機械性質的影響” ,技術學刊,第七卷,第二期,第129-139頁,民國81年。 [9] H.L. Lin, “Effect of Grain Size and Temperature on the Cryogenic Mechanical Properties of an Fe-Ni Alloy,” Chinese Journal of Materials Science, Vol.15, No.2, pp.65-74, 1983. [10] 張盛英、袁明輝、李炳生,坦克車輛金相圖譜,國防工業出版社,第1-55頁,民國75年。 [11] S.H. Choo, E.R. Baek, and S. Lee, “Ballistic Impact Behavior of Multi layered Armor Plates Processed by Hard Facing,” Metallurgical and Materials Transaction A, Vol. 27A, pp 3335-3340, 1996. [12] S. N. Dikshit, V.V. Kutumbarao and G. Sundaraajan, “The Influence of Plate Hardness on the Ballistic Penetration of Thick Steel Plates,” International Journal of Impact Engineering, Vol. 16, No. 2, pp. 293-320, 1995. [13] MG R.H. Scales and J.A. Parmentola, Army RD & A, Vol.2, 1998. [14] ASTM E399-90, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, Vol. 03.01, 1993. [15] ASTM E561-92a, “Standard Practice for R-curve Determination,” Annual Book of ASTM Standards, Vol. 03.01, 1993. [16] ASTM STP 381, “Fracture Toughness Testing and its Application,” Annual Book of ASTM Standards, 1964. [17] R.M. Hemphill and D.E. Wert, “High Strength, High Fracture Toughness Structural Alloy,” United States Patent, No.5,087,415, 1992. [18] C. Zapffe, “Stainless Steel,” American Society of Metals, ed.1,Ohio, pp.132-145, 1949. [19] V. P. Kujanpää, S. A. David, and C. L. White, “Characterization of Heat-Affected Zone Cracking in Austenitic Stainless Steel Welds,” Welding Journal, Vol.66, No.8, pp.221s-229s , 1987. [20] 姜志華、蔡金峯,銲接冶金概論,財團法人徐氏基金會,第四版,第13-21頁,民國85年。 [21] R. D. Thomas, “HAZ Cracking in Thick Sections of Austenitic Stainless Steels,” Welding Journal, Vol.63, No.12, pp.24s-32s , pp.355s-368s, 1984. [22] 鄭勝隆,“鎳基690合金與SUS 304L 不銹鋼異種金屬銲接特性與微結構研究”,國立成功大學機械工程學系博士論文,民國92年。 [23] S.Kou, Welding Metallurgy, ed. 2, John Wiley & Sons, Inc, New Jersey, pp.179-187, p.254, 2003. [24] K.E. Easterling, Introduction to the Physical Metallurgy of Welding, ed.2, Butterworth-Heinemann, UK, 1992. [25] ASM Hand Book, “Welding Brazing, and Soldering,” ed.10, ASM International Sweden, Vol.6, pp.70, 1990. [26] S. Okaguchi, T. Kushida, Y. Fukada, and S. Tanaka, The Sumitomo Research No. 43, p. 25, 1990. [27] T. Haze and Scitetsu Kenkyu, No.326, pp.36-44, 1987. [28] S. Lee, B. C. Kimand, and D. Kwon, “Correlation of Microstructure and Fracture Properties in Weld Heat-affect Zones of thermomechanically Controlled processed steel,” Metallurgical and Materials Transaction A, Vol.23A, pp2803-2816, 1991. [29] F. Faure, S. Debies, and P. Bouges, “Varestraint Testing of Hot Cracking Sensitivity of Nickel Base Claddings,” IIW, Doc. IX-1432-86, 1986. [30] K. Uchino and Y. Ohno, Proceedings of International Conference of 7th OMAE, Vol.3, pp.159-165, 1987. [31] 黃振賢,金屬熱處理,文京圖書,台北,第18版,第40頁,2000。 [32] B.E. Payne, “Nickel-base Welding Consumables for Dissimilar Metal Welding Applications,” Metal Construction, Vol.1, No.12, pp.79-87, 1969. [33] 周漢標、廖德潭、洪文山,“沃斯田鐵不銹鋼之銲接特性及熱裂分析(上)機械月刊”,第18卷,第2期,第155-171頁,民國81年。 [34] T. Takemoto, Y. Murata and T. Tanaka, “Effects of Alloying Elements and Thermo- mechanical Treatments on Mechanical and Magnetic Properties of Cr-Ni Austenitic Stainless Steel,” ISIJ International, Vol.30, No.8, pp.608-614, 1990. [35] A.W. James and C.M. Shepherd, “Some Effects of Heat Treatment on Grain Boundary Chemistry and Precipitation in Type 316 Steel,” Materials Science and Technology, Vol.5, No.4, pp.333-345, 1989. [36] Y. C. Lin and P. Y. Chen, “Effect of Nitrogen Content and Retained Ferrite on the Residual Stress in Austenitic Stainless Steel weldments,” Material Science and Engineering A, Vol. 307, pp.165-171, 2001. [37] J. Pavlovsky, B. Million and K. Cika, “Carbon Redistribution Between an Austenitic Cladding and a Ferritic Steel for Pressure Vessels of a Nuclear,” Materials Science and Engineering A, Vol.149, p.105, 1991. [38] C. D. Lundin, “Dissimilar Metal Welds–Transition Joints Literature Review,” Welding Journal, Vol.61, No.2, p.58s, 1982. [39] G. Faber and T. G. Gooch, “Welded Joints Between Stainless and Low Alloy Steels,” Welding in the World, Vol.20, No.5, 1982. [40] 根本正、佐佐木良一、幡谷文男,異種金属溶接繼手の高温强度,溶接學會志,第32卷,第7期,第595頁,民國63年。 [41] H. A. Schimmoeler and J. L. Ruge, Estimation of Residual Stresses in Reactor Pressure Vessle Steel Specimens Clad by Stainless Strip Electrodes, Residual Stress in Welded Construction and Their Effects, ed.1, (A InternationalConference) London, pp.15 - 17, 1977. [42] C. W. Cox, and S. D. Kiser, “Fusion Weldind of Dissimilar Metals for High-Temperature Strength,” Welding Journal,Vol.71, No.5, p.67s, 1992. [43] R. L. Klueh and J. F. King, “Austenitic Stainless Steel- Ferritic Steel Weld Joint Failures,” Welding Journal, Vol.61, No.9, p.302s, 1982. [44] A. K. Bhaburi, G. Scrinivasam and T. P. S. Gill, “Effect of Aging on the Microstructure and Tensile Properties of an Alloy 800/ 9Cr - 1Mo Steel Joint,” The International Journal of pressure Vessels and Piping, Vol.61, No.1, p.25, 1995. [45] R. W. Emerson, R. W. Jackson and C. A. Danber, “Transition Joints Between Austenitic and Ferritic Steel Piping for High Temperature Steam Service,” Welding Journal, Vol.41, No.9, p.385s, 1962. [46] M. Hillert, “On the Theory of Normal and Abnormal Grain Growth,” Acta Metal -lurgica, Vol.13, No.3, pp.227–238, 1965. [47] L. Karlsson, “Welding of Dissimilar Metal,” Welding in the World, Vol.36, No.6, p.125, 1995. [48] J.A. Brooks and A.W. Thomposon, “Microstructure Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds,” International Materials Review, Vol.36, No.1, pp.16-44, 1991. [49] T. Koseki and M.C. Flemings “Solidification of Under cooled Fe-Cr-Ni Alloys Micro Structural Evolution,” Metallurgical and Materials Transaction A, A27, pp.3226-3240, 1996. [50] V. P. Kujanpaa, S. A. David and C. L. White, “Formation of Hot Cracks in Austenitic Stainless Steel Welds-Solidification Cracking,” Welding Journal, Vol.65, No.8, pp.203s-212s, 1986. [51] O. Hammer and U. Svensson, “Solidification Technology in the Foundry and Casthouse,” The Metals Society, pp.401-410, 1980. [52] N. Suutala, “Effect of Solidification Conditions on the Solidification Mode in Austenitic Stainless Steels,” Metallurgical and Materials Transactions A, Vol.14A, pp.191-197, 1984. [53] K. Rajaqsekhar, C. S. Harendranath, R Raman and S.D. Kulkarni, “Microstructural Evolution During Solidification of Austenitic Stainless Steel Weld Metals,” Materials Characterization, Vol.38, No.2, pp.53-65, 1997. [54] U.M. Ehrnsten, J. Likonen, L.I. Carpen and O.A. Varjonen, “Studying Localized Corrosion in Stainless Steels with Surface-Sensitive Methods,” Materials Characterization, Vol.36, pp.279-289, 1996. [55] 李正國,熱處理,高立圖書有限公司,台北,第93-95頁,民國82年。 [56] A.L. Schaffler, “Constitution Diagram for Stainless Steel Weld Metal,” Metal Progress, Vol.56, No.11, pp.680-688, 1949. [57] MNC Handbok nr 4, Rostfria stål Metallnormcentralen Stockholm, Sweden, 1983. [58] W.T. Delong, “Ferrite in Austenitic Stainless Steel Weld Metal,” Welding Journal, Vol.53, No.7, pp.273-286, 1974. [59] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, ed.2, Nelson Thornes., p. 110, 1992. [60] H. Nakagawa and J. B. Lee, “Weld Cracking in Duplex Stainless Steel (Report II) - Modeling of Cellular Dendritic Growth During Weld Solidification,” Transaction of JWRI , Vol.18, pp.107-117, 1989. [61] T. P. S. Gill, “Solidification Cracking in Austenitic Stainless Steel Welds,” Sãdhanã, Vol.28, pp. 359-382, 2003. [62] G. M. Goodwin, N. C. Cole, and G. M. Slaughter, “A Study of Ferrite Morphology in Austenitic Stainless Steel Weldments,” Welding Journal, Vol.51, No.9, pp.425s-429s, 1972. [63] S. A. David, “Ferrite Morphology and Variations in Ferrite Content in Austenitic Stainless Steel Welds,” Welding Journal, Vol.60,No.4, pp.63s-71s, 1981. [64] P. Bilmes, A. Gonzalez, C. Llorente and M. Solari, “Effect of δ Ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints,” Welding International, Vol.10, No.10, pp.797-808, 1996. [65] N. Murugan and R. S. Parmar, “Stainless Steel Cladding Deposited by Automatic Gas Metal Arc Welding,” Welding Journal, Vol.76, No.10, pp.391s-403s, 1997. [66] 黃祺祥、陳宏志,“不銹鋼銲接研究之探討( I )”,銲接與切割, 第8卷,第1期,第40-49頁,民國87年。 [67] AWS A5.1, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding , American Welding Society Miami, 2002. [68] AWS SFA-5.4, Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding, American Welding Society Miami, 2002. [69] B. D. Cullity and S. R. Stock ,Element of X-Ray Diffraction, ed.3, Prentice Hall, New Jersey, pp.170-173, 2001. [70] ASTM E8-89b, “Standard Test Methods of Tension Testing of Metallic Materials1,” Annual Book of ASTM Standards, Vol. 03.01, 1990. [71] ASTM E8-89b, “Standard Test Methods for Notched Bar Impact Testing of Metallic Materials1,” Annual Book of ASTM Standards, Vol. 03.01, 1990. [72] 陳文照、曾春風、遊信和,工程材料─材料科學基礎篇─,高立圖書有限公司,台北,第148頁,民國95年。 [73] R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steel Microstructure and Properties, ed.2, Arrangement with Elsevier Ltd, England, p.95, 1995. [74] J. N. Soo, “Some Aspects of the Creep and Fracture Properties of Intercritically Annealed 9Cr1Mo,” International Atomic Energy Agency and International Working Group on Fast Reactors, pp.99-579, 1983. [75] R. S. Fidler and G. Gooch, “The Hot Tensile Properties of Simulated Heat Affected Zone Structure in 9CrMo and 12CrMoV Steel ,” BNES, pp.35-128, 1978. [76] F. B. Pickering and A. D. Vassiliou, “Effect of Austenitizing Temperature on Constitution Transformation and Tempering of 9Cr-1Mo Steel,” Metal Technology,Vol.7, pp.13-409, 1980. [77] C. B. Dallam, S. Liu, and D. L. Olson, “Flux Composition Dependence of Microstructure and Toughness of Submerged Arc HSLA Weldments,” Welding Journal, Vol.64, No.5, pp.140s-151s, 1985. [78] N. A. Fleck, O. Grong, G. R. Edwards, and D. K. Matlock, “The Role of Filler Metal Wire and Flux Composition in Submerged Arc Weld Metal Transformation Kinetics,” Welding Journal., Vol.65, No.5, pp.113s-121s, 1986. [79] K. Laha, K. S. Chandravathi, K. B. Rao, and S. L. Mannan, “Hot Tensile Properties of Simulated Heat -Affected Zone Microstructure of 9Cr-1Mo Weldment,” International Journal of Pressure Vessels and Piping, Vol.62, pp.303-311, 1995. [80] 金重勳,熱處理,復文書局,p.29,pp.545-547,1998。
摘要: 本實驗主要是將超高強度鋼板利用309系列不銹鋼銲條進行銲接後,觀察與量測其銲接後之顯微結構以及機械性質對銲接性質之影響。本次實驗所選用之銲條為309、309L、309MoL,並以手工電弧銲(Shielded Metal Arc Welding, SMAW)的方式進行超高強度鋼板之對接;並且不銹鋼銲條成份中碳含量以及鉬含量的變化,進而探討銲接顯微結構與機械性質之影響。藉由X-ray繞射分析與金相顯微結構觀察來鑑定銲道內部之顯微結構;並利用拉伸試驗與衝擊試驗,來量測銲接工件之抗拉強度與破裂韌性;再利用掃描式電子顯微鏡(SEM)觀察拉伸以及衝擊後之破斷表面,藉此了解破裂模式。 利用銲道成份與Schaeffler-Delong Diagram所推導出的鉻當量比與鎳當量比之公式得知,超高強度鋼板經309系列不銹鋼銲條銲接後,其顯微組織皆為基地沃斯田鐵與殘留δ-肥粒鐵,與經過X-ray繞射分析後有相同之結果;其中以低碳且添加合金元素鉬之309MoL銲道內部殘留δ-肥粒鐵含量為最高(34.64%);309銲道內所殘留δ-肥粒鐵含量次之(18.52%);309L銲道內所殘留δ-肥粒鐵含量為最低(11.31%)。經由經驗式所計算出的殘留δ-肥粒鐵含量多寡,在金相顯微結構中可獲得證實。 在本實驗中發現,銲道沃斯田鐵基地相之晶粒大小深受殘留δ-肥粒鐵含量的影響,殘留δ-肥粒鐵含量愈多基地沃斯田鐵相之晶粒愈小,故於抗拉強度可藉由沃斯田鐵晶粒細化而提升;不過,在衝擊試驗結果顯示,沃斯田鐵晶粒細化卻無法提升破壞韌性,導致破壞韌性劣化主要原因為,殘留δ-肥粒鐵為連續蠕蟲狀結構,以致於提供了裂紋較容易傳播路徑,亦即銲道中沃斯田鐵晶粒細化效果不及裂縫沿著殘留δ-肥粒鐵相與沃斯田鐵相界面傳播的影響。
This study was focused on the microstructure and mechanical properties of ultra high strength steel butt join with 309 serial stainless steel electrode. 309, 309L, and 309MoL stainless steel was employed for electrode, and carrying on the butt joint of the ultra high strength steel by Shielded Metal Arc Welding (SMAW). From the chemical composition of the carbon content and molybdenum content in welding metal compositions of 309 serial stainless steel electrode, it found different carbons and molybdenum content had the significant effect on microstructure and mechanical properties of weldments. Therefore, the crystalline structure was determined by X-ray diffraction (XRD) and metallographic method was used for investigating the microstructure of weld. As to the mechanical properties of weld, tensile test and impact test were carried on the gauge of tensile strength and fracture toughness. In addition, the draw and breaking fractured surface after tensile test and impact test were observed with scanning electron microscope (SEM), analyzed the fracture mode. By using the formula of Crequ./Niequ. ratio from Schaeffler-Delong Diagram, austenitic and ferritic phases were co-existed among the weld of ultra high strength steel butt join, welded with 309 serial stainless steel electrode. The predictive results were proved from metallographic structure and XRD analysis. Besides, 309MoL weld possessed the highest amount of residual δ-ferrite (34.64%)and 309L weld had the lowest content of residual δ-ferrite(11.31%). It can be calculated accurately according to metallography. In this study, it found that the austenitic grain size of matrix in weld was affected by the variation of residual δ-ferrite content obviously. The austenitic grain size was decreased with the residual δ-ferrite content increasing. From the mechanical test results, tensile strength of weldment was enhanced devoted to the austenitic grain size refining and higher residual δ-ferrite content. And after impact test, the result appeared the existence of continuous vermicular residual δ-ferrite offered the route for the cracks to propagate spite of austeniteic grain refinement.
URI: http://hdl.handle.net/11455/10163
其他識別: U0005-1207200614502400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1207200614502400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.