Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10171
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributorRay-Hua Horngen_US
dc.contributor藍文厚zh_TW
dc.contributorWen-How Lanen_US
dc.contributor.advisor武東星zh_TW
dc.contributor.advisorDong-Sing Wuuen_US
dc.contributor.author倪赫擎zh_TW
dc.contributor.authorNi, He-Chingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:44:24Z-
dc.date.available2014-06-06T06:44:24Z-
dc.identifierU0005-1306200623201300zh_TW
dc.identifier.citation[1]D. A. Janny, J. J. Loferski, and P. Rappaport, “The Status of Transistor Research in Compound Semiconductors”, Physical Review, 101, pp.1208, 1 Feb 1956 [2]B. Burnett, “The Basic Physics and Design of Ⅲ-Ⅴ Multijunction Solar Cells”, the NREL’s Ⅲ-Ⅴ research, 2002. [3]Richard R. King et al., “Advances in High-Efficiency Ⅲ-Ⅴ Multijunction Solar Cells”, Advances in OptoElectronics, Article ID 29523, pp.8, 2007. [4]R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., 90, pp.3, 2007 [5]J. F. Geisz et al., “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., 91, Article ID 023502, 2007 [6]Tomoya Kodama et al., “Development of Space Solar Sheet”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 6O-B11-03, 2007 [7]H. Yamaguchi et al., “Investigation on non-ohmic properties for thin film InGap/GaAs solar cell”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2, pp.1805-1807, 2006 [8]T. Takamoto et al., “Paper-Thin InGaP/GaAs Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2, pp. 1769-1772, 2006 [9]J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial Lift-Off for large area thin film Ⅲ/Ⅴ devices”, phys. Stat. sol.(a) 202, No.4, pp. 501-508, 2005 [10]J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen and E. Bongers, “Thin-film GaAs Epitaxial Lift-off Solar Cells for Space Applications”, Prog. Photovolt: Res. Appl., 13, pp.587-596, 2005 [11]Hery W. Brandhorst, “Evolution of space solar cell and array technology for the next decade”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 6O-B11-01, 2007 [12]T. Takamoto, M. Kaneiwa, M. Imaizumi and M. Yamaguchi, Prog. Photovolt: Res. Appl., 13, pp.495-511, 2005 [13]H. J. Moller, “Semiconductor for solar cell”, Artech House, Boston, 1993 [14]陳頤承I. C. Chen, 郭昭顯C. H. Kuo, 陳俊亨C. H. Chen, “工業材料雜誌”, 258期, pp.249–256, June, 2008 [15]Stephen T. Thornton, Andrew Rex, “Modern Physics for Scientists and Engineers”, 3rd. Thomson Books/Cole, June, 2006 [16]R. H. Bube, “Electronic Properties of Crystalline Solids”, Academic Press, New York, 1974 [17]P. Bhattacharya, “Semiconductor Optoelectronic Devices”, Prentice-Hall, Englewood Cliffs, pp.119-131, 1994 [18]S. R. Kurtz, J. M. Olson, D. J. Friedman, J. F. Geisz, and A. E. Kibbler, “Passivation of Interfaces in High-Efficiency Photovoltaic Devices”, presented at the Materials Research Society’s Spring Meeting, San Francisco California, April 5-9, 1999 [19]S. Adachi, H. Kato, “Refractive index of (AIxGa1-x)0.5In0.5P quaternary alloys”, J. Appl. Phys., 75, pp.478-480, 1994 [20]D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs”, J. Appl. Phys., 60, pp.755-767, 1986 [21]Sze, S. M, “Semiconductor Devices: Physics and Technology”, 2nd ed. John Wiley and Sons, New York, 2001 [22]D. A. Neamen, “Semicondutor Physics & Devices: Basic Principle”, 3rd ed. McGraw-Hill Inc., 2006 [23]莊嘉琛, 太陽能工程-太陽電池篇, 全華, 台北市, 民86年 [24]李正中, 薄膜光學與鍍膜技術, 第五版, 藝軒, 台北市, 民國95年 [25]D. S. H. Chan, and J. C. H. Phang, “Analytical Methods for the Extraction of Solar-Cell Single- and Double-Diode Model Parameters from I-V Characteristics,” IEEE Trans. Electron Devices, 34, pp.286-293, Feb 1987 [26]M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates”, J. Appl. Phys., 58, pp.3601, 1985 [27]C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates”, Appl. Phys. Lett., 84, pp.3447-3449, 3 May 2004 [28]C. L. Andre, D. M. Wilt, A. J. Pitera, M. L. Lee, and E. A. Fitzgerald, “Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates”, J. Appl. Phys., 98, 2005 [29]T. Shitara and K. Eberl, “Electronic properties of InGaP grown by solid-source molecular-beam epitaxy with a GaP decomposition source”, Appl. Phys. Lett., 65, pp.356-358, 1994 [30]M. Ikeda, K. Kaneko, “Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition”, J.Appl. Phys, 66, pp.5285-5289 ,1989 [31]Aspnes, D. E., Surface Sci. 132, 1-3, pp.406-421, 1983 [32]S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathye, U. K. Chakrabarti, J.Vac. Sci. Technol., B12, pp.143-146 ,1994 [33]Abderrahmane Belghachi, Abderrachid Helmaoui, Solar Energy Materials & Solar Cells, 92, pp.667-672, 2008 [34]J. Mandelkorn and J. H. Lamneck, Jr., 9th Photovoltaic Specialists’ Conf., 2-3 May 1972 [35]J. Zhao and Martin A. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells”, IEEE Trans. Electron Devices, 38, pp1925-1934, 1991 [36]鍾迪生, 真空鍍膜, 遼寧大學出版社, 民國90年 [37]雷永泉, 新能源材料, 新文京開發出版社, 民國93年 [38]J. C. H. Phang, D. S. H. Chan, and J. R. Phillips, “Accurate analytical method for the extraction of solar cell model parameters,” Electron. Lett., 20, pp.406-408, 1984 [39]K. L. Kennerud, “Analysis of performance degradation in CdS solar cells”, ibid., AES-5, pp.912-917, 1969 [40]林喬楨, 具有銅基板之砷化鎵太陽電池製作與特性研究, 國立中興大學材料科學與工程研究所碩士論文, 民國97年zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10171-
dc.description.abstractThis thesis described the simulation and verification results of GaAs solar cells. Two kinds of cell structures were compared: one is the GaAs solar cell on a GaAs substrate, and the other the GaAs solar cell transferred onto a copper substrate by electroplating. Both the experimental and simulation results were compared, where the simulation calculation was based on the theory of semiconductor device physics, and was calculated by the numerical Mathematica computing software. Some of the simulation was verified using a commercial software, i.e. Crosslight. Details of the advantages, weaknesses, and feasibility of the substrate transferring technique were also disscussed. According to the simulated results, it was found that the incident light was not fully absorbed in the solar cell due to a thinner base layer. The un-absorbed incident light could be further reflected by a AuGe/Au mirror layer and absorbed again by the base layer. Thus the disadvantage of the GaAs thin-film cell with a thinner base layer could be solved by the additional reflection from the AuGe/Au mirror with a high reflectivity within 800~1000 nm wavelength. Moreover, the external quantum efficiency in the long wavelength region and short current density (Jsc) were also increased. In our experimental results, we have transferred the GaAs solar cells from GaAs substrates onto the mirror-coated copper substrates with the base layer thickness of 1.5 μm. The photovoltaic performance of the orginal GaAs solar cell on a GaAs substrate was also measured. Under AM1.5G and without anti-reflective coatings conditions, it is found that the Jsc can increase from 12.6 mA/cm2 to 13.82 mA/cm2, while the conversion efficiency (η) can improve from 7.91% to 8.53%. As a result, the enhanced Jsc and η data of the GaAs solar cells can be contributed by the AuGe/Au mirror between the GaAs solar cell and copper substrate.en_US
dc.description.abstract本論文主要針對砷化鎵太陽電池之模擬與驗證,比較以砷化鎵為基板的基板型結構及利用轉移技術將砷化鎵太陽電池轉移至銅基板的薄膜型結構。本文比較兩種結構的差異、優缺點及基板轉移的可行性,並與實際的實驗結果互相比較,驗證模擬結果的可行性。模擬理論根據半導體元件物理理論,數值運算則由Mathematica軟體計算之,且利用商用模擬軟體Crosslight對部份模擬結果作驗證及比較。 從模擬結果中得知,薄膜型結構之太陽電池可以經由AuGe/Au之金屬反射層,再次將未被基極層完全吸收之入射光反射回太陽電池,使得薄膜型結構在長波段的外部量子效率獲得提升,這結果顯示薄膜型結構太陽電池可利用AuGe/Au之金屬反射層在長波段的高反射率,改善使用較薄基極層時,無法將入射光完全吸收的缺點。 在實驗驗證方面,本實驗室將砷化鎵太陽電池由砷化鎵基板轉移至銅基板上,在基極厚度1.5 μm、AM 1.5G、以及元件未披覆抗反射膜的條件下,短路電流密度可由12.6 mA/cm2提升至13.82 mA/cm2,增加9.7%,而轉換效率則可由7.91%提升為8.53%,這結果顯示當砷化鎵太陽電池基極底部鍍有金屬反射層時,的確能適度地提升太陽電池的短路電流密度及轉換效率。zh_TW
dc.description.tableofcontents誌謝 I 中文摘要 II Abstract III 目錄 V 表目錄 VIII 圖目錄 IX 圖目錄 IX 第一章 緒論 1 1-1前言 1 第二章 文獻回顧與評析 2 2-1 現今發展趨勢 2 2-2 太陽電池基板轉移 3 2-3 研究動機 5 第三章 太陽電池工作原理 6 3-1 光伏特效應與太陽電池 6 3-2 太陽光的頻譜照度 8 3-3 太陽電池的電路模型 8 3-4 頻譜響應 11 第四章 模擬之理論基礎與模擬軟體 14 4-1 模擬之理論基礎 14 4-1-1 太陽光譜與材料光吸收係數 14 4-1-2 太陽電池的電流密度及電壓公式 18 4-1-3 材料的載子擴散長度、移動率及生命期 23 4-1-4 窗口層復合速率與背面表面場效應 24 4-1-5 背面表面場效應BSF 25 4-1-6 抗反射層 26 4-1-7 薄膜型砷化鎵太陽電池之金屬鏡面反射效應 28 4-2 模擬軟體與假設 30 4-2-1 數學運算大師Mathematica軟體簡介 30 4-2-2 商用模擬軟體Crosslight簡介 31 4-2-3 模擬軟體Crosslight及Mathematica假設之比較 32 第五章 模擬結果 33 5-1太陽電池模擬之參數 33 5-2 基極厚度對基板型太陽電池的影響 34 5-3 基極厚度對薄膜型太陽電池的影響 35 5-4 射極厚度對基板型及薄膜型太陽電池的影響 39 5-5 射極摻雜濃度對基板型及薄膜型太陽電池的影響 41 5-6 基極摻雜濃度對基板型及薄膜型太陽電池的影響 42 5-7 BSF厚度對基板型及薄膜型太陽電池的影響 43 5-8 BSF摻雜濃度對基板型及薄膜型太陽電池的影響 44 5-9 表面復合速率對基板型及薄膜型太陽電池的影響 44 5-10 產生-復合電流對太陽電池的影響 44 第六章 基板轉移與驗證 46 6-1 基板的薄化與轉移 46 6-2 反射型基板太陽電池的驗證 46 第七章 結論與未來展望 49 7-1 結論 49 7-2 未來展望 50 參考文獻 51zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1306200623201300en_US
dc.subjectGaAsen_US
dc.subject砷化鎵zh_TW
dc.subjectSolar cellsen_US
dc.subjectSubstrate transferringen_US
dc.subjectDevice simulationen_US
dc.subject太陽電池zh_TW
dc.subject基板轉移zh_TW
dc.subject元件模擬zh_TW
dc.title反射基板型砷化鎵太陽電池之模擬分析與驗證zh_TW
dc.titleSimulation and Verification of GaAs Solar Cells with Mirror Substratesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.