Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10177
標題: 退火溫度對累積軋延鋁銅複合材料之研究
Investigation of Al/Cu composite with various annealing temperatures during ARB process
作者: 施明劭
Shi, Ming-Shou
關鍵字: Al/Cu
鋁銅
ARB
軋延複合
晶粒細化
出版社: 材料科學與工程學系所
引用: 【1】 丁旭光、張質良,“雙金屬固相接合機理與研究趨勢”,鍛壓技術,第2期,第32-35頁,民國86年。 【2】 鄧茂英,“金屬多層板材料技術簡介”,材料世界網。 【3】 V. A. Altekar, S. K. Banerjee, B. N. Ghose, and J. Bhattacharya, “Development of clad metals for various applications,” NML Technical Journal, Vol. 23, pp. 32-36, 1981. 【4】 K. Shinji, “Application of new welding and joining processes to rolling stock and aerospace industries,” Journal of the Japan Welding Society, Vol. 72, pp. 49-52, 2003. 【5】 A. Yahiro, T. Masui, T. Yoshida, and D. Doi, “Development of nonferrous clad plate and sheet by warm rolling with different temperature of materials,” IJIS International, Vol. 31, pp. 467-654, 1991. 【6】 N. Tsuji, R. Ueji, Y. Ito, and Y. Saito, “In-situ recrystallization of ultra-fine grains in highly strained metallic materials,” Proceedings of the 21st Riso International Symposium on Materials Science, RISO National Laboratory, Denmark, pp. 607-616, 2000. 【7】 Y. Saito, H. Utsunomiya, H. Suzuki, and T. Sakai, “Improvement in the r-value of aluminum strip by a continuous shear deformation process,” Scripta Materialia, Vol. 42, pp. 1139-1144, 2000. 【8】 Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G.. Hong, “Accumulative roll-bonding of 1100 aluminum,” Journal of the Japan Institute of Metals, Vol. 63, pp. 790-795, 1999. 【9】 W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G.. Murch, P. Temple Smith, and C. J. Dawes, “Friction stir welding and related friction process characteristics,” Welding Institute, Vol. 460, pp. 317-321, 1995. 【10】Y. Wang and R. S. Mishra, “Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloy,” Materials Science and Engineering A, Vol. 463, pp. 245-248, 2007. 【11】Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Materials Science and Engineering A, Vol. 271, pp. 213-220, 1999. 【12】余煥騰、陳適範,金屬塑性加工學,全華科技圖書股份有限公司,第2-7頁,民國83年。 【13】余煥騰、陳適範,金屬塑性加工學,全華科技圖書股份有限公司, 第150-154頁,民國83年。 【14】林大超、史慶南,“雙金屬軋制複合技術及其研究進展”,雲南冶金,第27卷,第32-36頁,1998。 【15】魏偉、史慶南,“銅/鋼雙金屬板異步軋制複合機理研究”,稀有金屬,第7卷,第307-311頁,2001。 【16】亢世江、呂玉申、陸軍芳,“金屬冷壓焊結合機理試驗研究”,機械工程學報,第35卷,第77-80頁,1999。 【17】蘇貴福 譯,新材料的接合技術,全華科技圖書股份有限公司,第82-102頁,民國81年。 【18】張鑑嘉、謝鴻志、林東毅、吳威德, “金屬材料擴散接合製程參數之影響”,銲接與切割,第15卷,第2期,第37-40頁,民國94年。 【19】William D. Callister, Jr., Materials Science and Engineering AN Introduction, ed. 6, WILEY, U.S.A, pp. 19-25, 2002. 【20】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,機械材料學,全華科技圖書股份有限公司,第187-189頁,民國91年。 【21】ASM Handbook, American Society for Metals, Ohio, Vol. 6, pp. 312-314 and 961-963, 1993. 【22】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, p. 220, 1991. 【23】H. Q. Kazagof, “Diffusion welding of materials,” National Defense Industry Press, pp. 4-12, 1984. 【24】N. Bay, “Mechanism producing metallic bonds in cold welding,” welding Journal, Vol. 62, pp. 137s-142s, 1983. 【25】J. A. Cave and J. D. Williams, “The mechanism of cold pressure welding by rolling,” Journal of the Institute of Metals, Vol. 101, pp. 203-207, 1973. 【26】李雲濤、杜則裕、陶勇寅,“Interfacial bonding state on different metals Ag , Ni in cold pressure welding”,中國有色金屬學會會刊,第13卷,第2期,第276-279頁,2003。 【27】D. Pan, K. Gao, and J. Yu , “Cold roll bonding of bimetallic sheets and strips,” Material Science and Technology, Vol. 5, pp. 934-939, 1989. 【28】邱國保,“Ti-6Al-4V擴散接合之研究”,國立中央大學機械工程研究所碩士論文,民國92年。 【29】D. Stephen, Designing With Titanium, The Institute of Metals, Birmingham, p. 108, 1986. 【30】P. G.Partridge, J. Harvey, and D. V. Dunford, Advanced Joining of Metallic Materials, AGARD Conference Proceeding, Norway, p. 398, 1985. 【31】夏生明,“304不銹鋼與軟鋼之鍛造接合研究”,義守大學材料科學與工程學系碩士論文,民國91年。 【32】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, pp. 374-376, 1991. 【33】X. K. Peng, G. Heness, and W. Y. Yeung, “Effect of rolling temperature on interface and bond strength development of roll bonded copper/aluminum metal laminates,” Journal of Materials Science, Vol. 34, pp. 277-281, 1999. 【34】X. K. Peng, R. Wuhrer, G. Heness, and W. Y. Yeung, “Rolling strain effects on the interlaminar properties of roll bonded copper/aluminum metal laminates,” Journal of Materials Science, Vol. 35, pp. 4357-4363, 2000. 【35】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,機械材料學,全華科技圖書股份有限公司,第457-459頁,民國91年。 【36】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,機械材料學,全華科技圖書股份有限公司,第100-102頁,民國91年。 【37】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, p. 362, 1991. 【38】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, pp. 404-406, 1991. 【39】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, p. 373, 1991. 【40】G. Krallics and J. G. Lenard, “An examination of the accumulative roll-bonding process,” Journal of Materials Processing Technology, Vol. 152, pp. 154-161, 2004. 【41】Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-binding process,” Scripta Materialia, Vol. 39, pp. 1221-1227, 1998. 【42】N. Tsuji, K. Shiotsuki, H. Utsunomiya, and Y. Saito, “Low temperature superplasticity of ultra-fine grained 5083 aluminum alloy produced by accumulative roll-bonding,” Materials Science Forum, Vol. 304-306, pp. 73-78, 1999. 【43】Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials─development of the accumulative roll-bonding (ARB) process,” Acta Materialia, Vol. 47, pp. 579-583, 1999. 【44】N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, “Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process,” Scripta Materialia, Vol. 40, pp. 795-800, 1999. 【45】張鑑嘉、謝鴻志、陳明哲、吳威德、林東毅,“累積軋延接合技術產製高性能金屬基複合材料”,工業材料,第224期,第176-180頁,2005年。 【46】陳皇鈞 譯,材料科學與工程,曉園出版社,第105頁,民國78年。 【47】X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, “Microstructural evolution during accumulative roll-bonding of commercial purity aluminum,” Materials Science and Engineering A, Vol. 340, pp. 265-271, 2003. 【48】S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding,” Materials Science and Engineering A, Vol. 325, pp. 228-235, 2002. 【49】高霖、鳳佩華、張秀芳,“單項塑性材料細晶強化的強度與韌性”,鍛壓技術,第5期,民國83年。 【50】S. S. Wu, S. Y. Chen, and D. Gan, “Effects of grain boundary carbide on the stress-strain curves of type 316 stainless,” Materials Science and Engineering A, Vol. 127, pp. L1-L5, 1990. 【51】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, pp. 192-194, 1991. 【52】S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai, “ Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process,” Scripta Materialia, Vol. 46, pp. 281-285, 2002. 【53】李河宗、李玉剛、于九明、黃素霞,“不銹鋼和鋁固相軋製複合的結合機理”,河北理工學院學報,第24卷,第24-27頁,2002。 【54】Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, p. 292, 1991. 【55】M. Koberna and J. Fiala, “Intermetallic phases influencing the behaviour of Al-Cu joints,” Journal of Physics and Chemistry of Solids, Vol. 54, No. 5, pp. 595-601, 1993. 【56】T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle, “Atomic structure of Al/Al interface formed by surface activated bonding,” Journal of Materials Science, Vol. 34, pp. 4133-4139, 1999. 【57】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,機械材料學,全華科技圖書股份有限公司,第103頁,民國91年。 【58】William D. Callister, Jr., Materials Science and Engineering AN Introduction, ed. 6, WILEY, USA, p. 101, 2002. 【59】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,機械材料學,全華科技圖書股份有限公司,第111-112頁,民國91年。 【60】M. Abbasi, A. Karimi Taheri, and M. T. Salehi, “Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process,” Journal of Alloys and Compounds, Vol. 319, pp. 233-241, 2001. 【61】J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee, and Y. R. Cho, “Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets,” Journal of Materials Processing Technology, Vol. 187, pp. 546-549, 2007. 【62】W. B. Lee, K. S. Bang, and S. B. Jung, “Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing,” Journal of Alloys and Compounds, Vol. 390, pp. 212-219, 2005. 【63】M. Braunovic and N. Alexandrov, “Intermetallic compounds at aluminum-to- copper electrical interfaces:effect of temperature and electric current,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, Vol. 17, No. 1, pp. 78-85, 1994. 【64】B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, ed. 3, Prentice-Hall, USA, p. 170, 2001.
摘要: 本實驗研究不同退火溫度對鋁/銅累積軋延複合材料之影響,利用累積軋延複合之技術將純鋁(AA1100)以及純銅(C11000)以鋁/銅/鋁的方式疊合成3層結構,接著軋延到8 cycles形成384層之結構。軋延後之試片分別進行300℃與400℃之退火處理,利用光學顯微鏡與掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察各軋延循環試片之顯微結構形貌,再利用X-ray繞射分析鑑定中間相介金屬化合物之型態,並比較無退火及有退火狀態下機械性質之差異。 由顯微結構觀察結果顯示,無退火之鋁銅結構為層狀排列;而在300℃退火處理,則可發現在鋁與銅層之間有部分頸縮(Necking)的現象發生;在400℃退火處理,則因為介金屬相成長過度導致擠壓鋁銅形成破碎的形貌。 由X-ray繞射分析與EDS結果顯示,中間相介金屬化合物在無退火的情況下不會生成;在300℃退火,則在6 cycles以上有Al2Cu(θ)與Al4Cu9(γ2)生成,且在8 cycles生成AlCu(η2);在400℃退火,則是在2 cycles以上即生成此三種介金屬相。 經由SEM觀察結果顯示,無退火處理及300℃退火時,無裂紋的形成;在400℃退火時,則可發現裂紋的產生,分別為沿著鋁銅接合界面的破裂與貫穿介金屬相形成脆性破裂之劈裂(Cleavage)裂紋。 根據維氏硬度測試結果顯示,累積軋延試片隨著軋延數的增加會導致鋁與銅之硬度提高,鋁的硬度由未軋延前的Hv23提高為8 cycles的Hv58;銅之硬度由未軋延前的Hv93增加為8 cycles的Hv131,且硬度會隨著退火溫度的增加而下降。
The effects of aluminum/copper processed by accumulative roll-bonding (ARB) with various annealing temperatures was investigated. The specimens of this experiment were commercial pure aluminum (AA1100) and commercial pure copper (C11000), which stacked up to be a three laminar sandwich structure with Al/Cu/Al, then rolled to form a 384 laminar structure after 8 cycles. After rolling, the specimens were annealed at temperatures of 300℃ and 400℃. Microstructure and morphology of each rolling cycles were observed by means of optical microscope and scanning electron microscope (SEM). The X-ray diffraction was carried out to identify the intermetallic compounds of Al/Cu specimens. And then compare the mechanical properties of annealed specimens with non-annealed specimens. The microstructure observation results revealed that non-annealed Al/Cu specimens were formed as laminar structure, and discovered that the partial necking phenomenon between aluminum and copper laminae after 300℃ annealing. After 400℃ annealing, the aluminum and copper laminae were fractured by excessively growth of intermetallic compounds. From the X-ray diffraction and EDS results revealed that intermetallic compounds would not form without annealing, but Al2Cu(θ) and Al4Cu9(γ2) would appeared after 300℃ annealing above 6 cycles, and formed another intermetallic compound AlCu(η2) at 8 cycles. The formation of these three intermetallic compounds would be apparently observed after 400℃ annealing above 2 cycles. SEM observation results revealed that cracks occurred after 400℃ annealing, which resulted from the fracture along Al/Cu interfaces and cleavage cracks which passed through brittle intermetallic compounds. According to the microhardness results, the hardness of aluminum and copper would be enhanced due to increasing accumulative rolling cycles. The hardness of pre-rolled aluminum increased from Hv23 to Hv58 of 8 cycles, and the hardness of pre-rolled copper increased from Hv93 to Hv131 of 8 cycles, and then decreased with raising annealing temperature.
URI: http://hdl.handle.net/11455/10177
其他識別: U0005-1406200612372000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1406200612372000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.