Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10187
標題: 氮化銦鎵發光元件之內部量子效應研究
Study of the Internal Quantum Efficiency in InGaN Light Emitting Diodes
作者: 謝昌樺
Hsieh, Chang-Hua
關鍵字: light emitting diodes
發光二極體
InGaN
internal quantum efficiency
piezoelectric field
氮化銦鎵
內部量子效率
壓電場
出版社: 材料科學與工程學系所
引用: [1] H. J. Round, “A note on carborundum,” Electrical world, vol. 49, no.6, pp. 309, (1907). [2] Nick Holonyak, Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions”, Appl. Phys. Lett., vol. 1, (1962). [3] Shuji Nakamura, Senoh M., and Mukia T., “P-GaN/n-InGaN/GaN double-heterostructure blue-light-emitting diodes”, Jpn. J. Appl. Phys., vol. 32, pp. L8, (1993). [4] Wen-Yu Lin, Dong-Sing Wuu, Shih-Cheng Huang, and Ray-Hua Horng, “Enhanced Output Power of Near-Ultraviolet InGaN/AlGaN LEDs With Patterned Distributed Bragg Reflectors”, IEEE Trans. Electron Devices, vol. 32, pp. L8, (1993). [5] Chen-Yang Huang, Hao-Min Ku, Chen-Zi Liao, and Shiuh Chao, “MQWs InGaN/GaN LED with embedded micro-mirror array in the epitaxial-lateral-overgrowth gallium nitride for light extraction enhancement”, Optics Express, vol. 18, no. 10, pp. 10684, (2010). [6] K. H. Baik, B. K. Min, J. Y. Kim, H. K. Kim, C. Sone, Y. Park, and H. Kim, “Light output enhancement of GaN-based flip-chip light-emitting diodes fabricated with SiO2 /TiO2 distributed Bragg reflector coated on mesa sidewall”, J. Appl. Phys. vol. 108, pp. 063105, (2010). [7] Ki-Yeon Yang, Sang-Chul Oh, Joong-Yeon Cho, Kyeong-Jae Byeon, and Heon Lee, “Direct Indium Tin Oxide Nanoparticle Printing Technique for Improvement of Light Extraction Efficiency of GaN-Based LEDs”, Journal of The Electrochemical Society, vol. 157, pp. H1067-H1070, (2010). [8] Young Min Song, Eun Sil Choi, Gyeong Cheol Park, Chang Young Park, Sung Jun Jang, and Yong Tak Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency”, Appl. Phys. Lett., vol. 97, pp. 093110, (2010). [9] S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer”, Appl. Phys. Lett., vol. 96, pp. 133504, (2010). [10] Chu-Young Cho, Se-Eun Kang, Ki Seok Kim, Sang-Jun Lee, Yong-Seok Choi, Sang-Heon Han, Gun-Young Jung, and Seong-Ju Park, “Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN”, Appl. Phys. Lett., vol. 96, pp. 181110, (2010). [11] Chia-Hung Hou, Shao-Ze Tseng, Chia-Hua Chan, Tsing-Jen Chen, Hung-Ta Chien, Fu-Li Hsiao, Hua-Kung Chiu, Chien-Chieh Lee, Yen-Ling Tsai, and Chii-Chang Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres”, Appl. Phys. Lett., vol. 95, pp. 133105, (2009). [12] Ho Won Jang, Seong Wook Ryu, Hak Ki Yu, Sanghan Lee and Jong-Lam Lee, “The role of reflective p-contacts in the enhancement of light extraction in nanotextured vertical InGaN light-emitting diodes”, Nanotechnology, vol. 21, pp. 025203, (2010). [13] J. C. Li, T. C. Lu, H. M. Huang, W. W. Chan, H. C. Kuo, and S. C. Wang, “Characteristics of emission polarization in a-plane nanorods embedded with InGaN/GaN multiple quantum wells”, J. Appl. Phys., vol. 108, pp. 063508, (2010). [14] Hyung Gu Kim, Hyun Kyu Kim, Hee Yun Kim, Hyun Jeong, S. Chandramohan, Periyayya Uthirakumar, Mun Seok Jeong, Jeong-Sik Lee, Eun-Kyung Suh, and Chang-Hee Hong, “Enhanced air-cavity effect of periodically oriented embedded air protrusions for high-efficiency InGaN/GaN light-emitting diodes”, Optics Letters, vol. 35, no. 18, (2010). [15] Yuji Zhao, Junichi Sonoda, Chih-Chien Pan, Stuart Brinkley, Ingrid Koslow, Kenji Fujit, Hiroaki Ohta, Steven P. DenBaars, and Shuji Nakamura, “30-mW-Class High-Power and High-Efficiency Blue Semipolar InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique”, Applied Physics Express, vol. 3, pp. 102101, (2010). [16] Yu-Hsuan Sun, Yun-Wei Cheng, Szu-Chieh Wang, Ying-Yuan Huang, Chun-Hsiang Chang, Sheng-Chieh Yang, Liang-Yi Chen, Min-Yung Ke, Chi-Kang Li, Yuh-Renn Wu and JianJang Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Devices Letters, vol. 32, no. 2, (2011). [17] Sameer Chhajed, Wonseok Lee, Jaehee Cho, E. Fred Schubert, and Jong Kyu Kim, “Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN”, Appl. Phys. Lett., vol. 98, pp. 071102, (2011). [18] Rafal Dylewicz, Ali Z Khokhar, RadoslawWasielewski, Piotr Mazur and Faiz Rahman, “Nanotexturing of GaN light-emitting diode material through mask-less dry etching”, Nanotechnology, vol. 22, pp. 055301, (2011) [19] Kuei-Ting Chen, Wan-Chun Huang, Tsung-Han Hsieh, Chang-Hua Hsieh, and Chia-Feng Lin, “ InGaN light emitting solar cells with a roughened N-face GaN surface through a laser decomposition process”, Optics Express, vol. 18, no. 22, pp. 23406, (2010). [20] Cheng-Hung Lin, Cheng-Yen Chen, Dong-Ming Yeh, and Chih-Chung Yang, “Light Extraction Enhancement of a GaN-Based Light-Emitting Diode Through Grating-Patterned Photoelectrochemical Surface Etching With Phase Mask Interferometry”, IEEE Photonics Technol. Lett., vol. 22, no. 9, (2010). [21] Kuei-Ting Chen, Chia-Feng Lin, Chun-Min Lin, Chung-Chieh Yang, Ren-Hao Jiang, “InGaN-based light-emitting solar cells with a pattern-nanoporous p-type GaN:Mg layer”, Thin Solid Films, vol. 518, no. 7377-7380, (2010). [22] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”, Appl. Phys. Lett., vol. 94, pp. 111109, (2009). [23] J. Lee, X. Li, X. Ni,1 Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “On carrier spillover in c- and m-plane InGaN light emitting diodes”, Appl. Phys. Lett., vol. 95, pp. 201113, (2009). [24] X. Ni, J. Lee, M. Wu, X. Li, R. Shimada, Ü. Özgür, A. A. Baski, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “Internal quantum efficiency of c-plane InGaN and m-plane InGaN on Si and GaN”, Appl. Phys. Lett., vol. 95, pp. 101106, (2009). [25] X. Li, X. Ni, J. Lee, M. Wu, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes”, Appl. Phys. Lett., vol. 95, pp. 121107, (2009). [26] T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C.-H. Hong, E. K. Suh, H. K. Cho and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning”, Appl. Phys. Lett., vol. 90, pp. 131107, (2007). [27] Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng, and Guohong Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys., vol. 103, pp. 014314, (2008). [28] E. F. Schubert, “Light-Emitting Diodes” (Cambridge University Press, 2003). [29] M. Ferhat, and F. Bechstedt, Phys. Rev. B, vol. 65, pp. 075213, (2002). [30] Kittel, Introduction to Solid State Physical. [31] T. Takeuchi, S. Sota, M. Katsuragaw M. Komori, H. Takeuchi, H. Amano and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GalnN Strained Quantum Wells”, Jpn. J. Appl. Phys, vol. 36, pp. L382-L385, (1997). [32] S. H. Wei, NCPV and Dolar Program Review Meeting, pp.713, (2003). [33] Hung-Cheng Lin, Hsueh-Hsing Liu, Geng-Yen Lee, Jen-Inn Chyi, Chang-Ming Lu, Chih-Wei Chao, Te-Chung Wang, Chun-Jong Chang, and Solomon W. S. Chi, “Effects of Lens Shape on GaN Grown on Microlens Patterned Sapphire Substrates by Metallorganic Chemical Vapor Deposition”, Journal of The Electrochemical Society, vol. 157, pp. H304-H307, (2010). [34] Y. M. Park, J. K. Son, H. J. Chung, C. Sone, and Y. Park, “InGaN multiquantum well structure with a reduced internal electric field and carrier decay process by tunneling”, Appl. Phys. Lett., vol. 95, pp. 231917, (2009). [35] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells”, Appl. Phys. Lett., vol. 86, pp. 131108, (2005). [36] Martin F. Schubert, Qi Dai, Jiuru Xu, Jong Kyu Kim, and E. Fred Schubert, “Electroluminescence induced by photoluminescence excitation in GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., vol. 95, pp. 191105, (2007). [37] Jae-Ho Song, Ho-Jong Kim, Byung-Jun Ahn, Yanqun Dong, Sayong Hong, Jung-Hoon Song, Youngboo Moon, Hwan-Kuk Yuh, Sung-Chul Choi, and Sangkee Shee, “Role of photovoltaic effects on characterizing emission properties of InGaN/GaN light emitting diodes”, Appl. Phys. Lett., vol. 95, pp. 263503, (2009). [38] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki, Chiharu Sasaki, Yoichi Yamada, Tsunemasa Taguchi, Kazuyuki Tadatomo, Hiroaki Okagawa, and Hiromitsu Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes”, Appl. Phys. Lett., vol. 83, number 24, (2003). [39] Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu, Hao-Chung Kuo, and Shing-Chung Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, (2009). [40] Chia-Feng Lin, Kuei-Ting Chen, and Kun-Pin Huang, “Blue Light-Emitting Diodes With an Embedded Native Gallium Oxide Pattern Structure”, IEEE Electron Device Letters, vo1. 31, no. 12(2010)
摘要: 本論文中,我們使用不同的雷射功率激發方式,探討藍光發光二極體的內部量子效率。並且探討當發光二極體元件表面具有透明導電膜時對量測內部量子效率的影響。 實驗第一部分,在發光二極體晶片上鍍上一層厚度250nm的銦錫氧化物(ITO),定義出不同面積的正方形元件,探討10K與300K下不同雷射功率激發元件的情形。當在10K下時我們可以觀察到隨著激發功率提升,螢光強度遞增,並且發現沒有ITO以及不同面積的ITO其光激螢光強度在同功率下激發的螢光強度相近,這是由於10K下雷射激發產生的載子被p-GaN且ITO侷限無法擴散。300K下,光激螢光強度隨著ITO面積變大而下降,由於受到熱激活化以及ITO阻值下降使得導電性增加的影響,載子被擴散到中心點(雷射激發點)以外的地方,造成中心點有效的複合載子數目下降。並且觀察到沒有ITO樣品的波長曲線隨著激發功率增加會有先紅移再藍移的現象;相較於最大面積ITO(寬為10000μm方形)樣品在高功率下波長皆為紅移,這代表著該面積下大功率激發是落在沒有ITO的低功率激發下的現象。由於ITO面積變大使得300K下螢光強度除以10K下的螢光強度計算的內部量子效率逐漸下降。最大功率下,沒有ITO為61.5%,最大面積ITO為14.5%。 實驗第二部分,將發光二極體結構磊晶層成長在具有平台區的藍寶石基板(FPSS)以及具有尖錐狀的藍寶石基板(PPSS)上,探討其內部量子效率、壓電場、電激發以及雷射激發的光伏特性。首先觀察反向偏壓光激螢光光譜,FPSS與PPSS分別在-12V以及-8V達到平坦能帶,經由計算FPSS壓電場大小為-1.12(MV/cm)而PPSS為-0.92(MV/cm)。在10K與300K下,不同功率的光激發螢光光譜中發現:隨功率增加,內部量子效率會先上升而後達到穩定值,FPSS與PPSS在最高激發功率下內部量子效率分別為76.1%與83.8%。在10K時發現FPSS以及PPSS隨功率增加波長藍移量分別為2.0nm以及0.7nm。在電激發螢光光譜,FPSS螢光強度在20mA下提升約23.6%;並且其波長在1~20mA下,FPSS與PPSS波長藍移量分別為1.7nm與1.3nm。由於FPSS較大的壓電場使得能帶傾斜,造成載子注入效應明顯,以及電子電洞波函數重疊機率降低,導致波長藍移量增加和螢光強度下降。觀察元件的太陽能電池特性發現:FPSS在300K下時,隨激發功率改變,有較大的短路電流以及太陽能效率。最後我們發現PPSS有較佳的發光二極體特性,較高的內部量子效率和螢光強度;另一方面具有較低的壓電場和波長藍移量以及較差太陽能電池特性。
In this thesis, the internal quantum efficiencies of InGaN-based light-emitting diodes (LEDs) with and without ITO layers were analyzed through the power-dependent photoluminescence measurement. In the first part of this thesis, the different chip size of the InGaN LED structure with 250nm-thick ITO layer were fabricated through the laser scribing process. At 10K, the PL intensity of the LED structure with the flat ITO layer was increased by adding laser excitation power that was similar the LED structure without ITO layer. It's due to photo-induced carriers were frozen at the p-GaN and ITO layers at low temperature. At 300K, the PL intensity of the LED structure was decreased by increasing ITO conductive area. Because of the thermal activation in InGaN quantum well structure and the increasing conductivity of the ITO, the carriers diffused away from the laser excitation spot that the number of carriers' recombination were reduced. By increasing the laser excitation power, the PL peak wavelengths of LED structure without the ITO layer had the red-shift phenomenon at low excitation power and the blue-shit phenomenon at high excitation power. Nevertheless, LED devices with maximum ITO shows red-shift phenomenon at higher excitation power. This peak red-shift phenomenon of LED devices with maximum ITO layer at high excitation power was similar to the LED devices without ITO layer at low power. The internal quantum efficiencies (integrated PL intensity ratios, I300K/I10K) were calculated as 61.5% for devices without ITO and 14.5% for devices with maximum ITO. In the second part of this thesis, the LED structures were grown on the flat-form (FPSS) and the pyramid (PPSS) pattern sapphire substrate. In the reverse-bias PL spectra, the flat-band voltages were measured at -12V and -8V for FPSS and PPSS structures, respectively. The piezoelectric fields were calculated at -1.12 and -0.92 MV/cm for FPSS-LED and PPSS-LED, respectively. In the power dependent PL measurement, we find steady IQE value at high excitation power that the IQE values were measured at 76.1% and 83.8% for the FPSS-LED and the PPSS-LED, respectively. At 10K, the PL peak wavelength blue-shifted of FPSS-LED and PPSS-LED were measured as 2.0nm and 0.7nm. The light output power of PPSS-LED had a 23.6% enhancement at 20mA. The wavelength blue-shift of the EL spectra were measured as 1.7nm and 1.3nm for FPSS-LED and PPSS-LED, respectively. It could be caused by larger electric field induced band tilted of the InGaN well layer that induced the low electron-hole wave function overlap and large band filling effect. The larger Isc and the higher photovoltaic efficiency were observed in the FPSS-LED compared with the FPSS-LED structure.
URI: http://hdl.handle.net/11455/10187
其他識別: U0005-1807201100224600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201100224600
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.