Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10196
標題: 不同碳化鉻添加量對Fe-Cr-C硬面合金顯微結構及磨耗特性之研究
Microstructural and abrasive characteristics of Fe-Cr-C hardfacing alloy with various chromium carbides addition
作者: 花霈馨
Hua, Pei-Shing
關鍵字: Fe-Cr-C
Fe-Cr-C
hardfacing
chromium carbides
abrasive
硬面
碳化鉻
磨耗
出版社: 材料科學與工程學系所
引用: 【1】 E. A 馬爾欽柯著,何世禹譯,金屬表面磨擦破壞實習,國防工業出 版社,1990年8月。 【2】 劉家浚著,材料磨損原理及其耐磨性,清華大學出版社,第246-247頁, 1993年。 【3】 林福嚴、曲敬信、陳華輝編著,磨損理論與抗磨技術,科學出版社,1993年。 【4】 劉俊傑譯,金屬的表面處理與加工,徐氏基金會出版,第361-373頁,民國81年。 【5】 R. Dasgupta, R. Thakur, M. S. Yadav, and A. K. Jha, “High Stress Abrasive Wear Behavior of a hardfacing alloy:effects of some experimental factors,” Wear, Vol.236, pp.368-374, 1999. 【6】 C. K. Kim, S. Lee, J. Y. Jung, and S. Ahn, “Effects of Complex Carbide Fraction on High-Temperature Wear Properties of Hardfacing Alloys Reinforced with Complex Carbides,” Materials Science and Engineering A, Vol.349, pp.1-11, 2003. 【7】 K. Y. Lee, S. H. Lee, Y. Kim, H. S. Hong, Y. M. Oh, and S. J. Kim, “The Effects of Additive Elements on the Sliding Wear Behavior of Fe-Base Hardfacing Alloys,” Wear, Vol.255, pp.481-488, 2003. 【8】 D. J. Kotecki, and J. S. Ogborn, “Abrasion Resistance of Iron-Based Hardfacing Alloys,” Welding Research Supplement, Vol.74, pp.269-279, 1995. 【9】 T. Sharma, S. Maria, and D. K. Dwivedi, “Abrasive Wear Behaviour of Fe-30Cr-3.6C Overlays Deposited on Mild Steel,” ISIJ International, Vol.45, pp.1322-1325, 2005. 【10】 D. K. Dwivedi, “Abrasive Wear Behaviour of Iron Based Hard Surfacing Alloy Coatings Developed by Welding,” Surface Engineering, Vol.20, pp.87-92, 2004. 【11】 R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, Vol. , pp.43-46, 1996. 【12】 C. A. Mayer, “How to Select Hardsurfacing Materials,” Welding Design & Fabrication, Vol.82, pp.61-67,1982. 【13】 E. N. Gregory and M. Bartle, “Welding Surfacing and Hardfacing,” The welding institute, 1980. 【14】 S. Atamert, and H. K. D. H. Bhadeshia, “Microstructure and stability of Fe-Cr-C hardfacing alloys,” Materials Science and Engineering A, Vol.130, pp.101-111, 1990. 【15】 L. E. Svensson, B. Gretoft, B. Ulander, and H. K. D. H. Bhadeshia, “Fe-Cr-C hardfacing alloys for high-temperature applications,” Journal of Materials Science, Vol.21, pp.1015-1019, 1986. 【16】 S. Chatterjee, and T. K. Pal, “Wear behavior of hardfacing deposits on cast iron,” Wear, Vol.255, pp.417-425, 2003. 【17】 M. F. Buchely, J. C. Gutierrez, L. M. Leon, and A. Toro, “The effect of microstructure on abrasive wear of hardfacing alloys,” Wear, Vol.259, pp.52-61, 2005. 【18】 J. A. Pero-Sanz, D. Plaza, J. I. Verdeja, And J. Asensio, “Metallographic characterization of hypoeutectic martensitic white cast irons:Fe-C-Cr System, ” Materials Characterization, Vol.43, pp.33-39, 1999. 【19】 A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D. V. Edmonds, and J. T. H. Pearce, “Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons,” Acta Materialia, Vol.53, pp.4143-4154, 2005. 【20】 A. K. Jha, B. K. Prasad, R. Dasgupta, and O. P. Modi, “Influence of Material Characteristics on the Abrasive WearResponse of Some Hardfacing Alloys,” Journal of Materials Engineering and Performance, Vol.8(2), pp.190-196, 1999. 【21】 A. K. Jha, A. Gachake, B. K. Prasad, R. Dasgupta, M. Singh, and A. H. Yegneswaran, “High Stress Abrasive Wear Behavior of Some Hardfaced Surfaces Produced by Thermal Spraying,” Journal of Materials Engineering and Performance, Vol.11(1), pp.37-45, 2002. 【22】 R. Kejzar and J. Grum, “Hardfacing of wear-resistant deposits by mag welding with a flux-cored wire having graphite in its filling,” Material and manufacturing process, Vol. 20, pp. 961-976, 2005. 【23】 M. Scholl, R. Devanathan, and P. Clayton, “Abrasive and dry sliding wear resistance of Fe-Mo-Ni-Si and Fe-Mo-Ni-Si-C weld hardfacing alloys,” Wear, Vol. 135, pp. 355-368, 1990. 【24】 賴耿陽譯著,加焊硬面熔接技術,第1-9頁,復漢出版社,1977年。 【25】 P. Crook, “Friction and wear of hardfacing alloys,” in:ASM Handbook, Friction, Lubrication and wear technology, Vol. 18, pp. 758-765, 1992. 【26】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp.1-34, 1987. 【27】 R. J. Dawson, S. Shewchk, and J. E. Pritchard, “Selection and Use of Hardfacing Alloys,” Weld. J., Vol.11, pp.15-23, 1982. 【28】 H. O. Pierson, Handbook of refractory carbides and nitrides, Noyes publications, New jersey, pp. 100-115, 1996. 【29】 B. Chalmers, Principles of solidification, John Wiley & sons, Inc., New York, 1964. 【30】 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚,機械材料學,全華科技圖書第225-227頁,2002年。 【31】 R. E. Reed-Hill, Physical Metallurgy Principles, ed. 3, pp. 8-10, pp. 140-145, pp. 243-248, pp. 444-455, 1994. 【32】 R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties, ed. 2, Wu-Nan Culture Enterprise, p. 29, 2004. 【33】 J. F. Lancaster, Metallurgy of welding, ed.5, p.148, 1993. 【34】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 129-151, 1987. 【35】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, p. 158, 1987. 【36】 金重勳,熱處理,復文書局,民國90年12月。 【37】 姜志華、蔡金峯,銲接冶金概論,徐氏基金會,民國76年8月。 【38】 楊顯榮,工程材料科學,全華科技圖書,民國87年9月。 【39】 T. Prucher, “Transformation of retained austenite during freezing,” Advances in Powder Metallurgy and Particulate Materials, Vol. 2, pp. 13-101, 1997. 【40】 S. A. Fedosov, “Effect of laser treatment on the retained austenite content of carbon and chromium steels,” Physics and chemistry of materials treatment, Vol. 24, No. 5, pp. 441-444, 1990. 【41】 G. V. Raynor and V. G.. Rivlin, Phase equilibria in iron ternary alloys, The insititute of metals, the math press, UK, p. 143, 1988. 【42】 J. Asensio, J. A. Pero-Sanz, and J. I. Verdeja, “Microstructure selection criteria for cast irons with more than 10 wt.% chromium for wear applications,” Materials Characterization, Vol. 49, pp. 83-93, 2003. 【43】 G. P. Tilly, Erosion caused by impact of solid particles, ed. 13, Treatise on Materials Science and Technology, New York, pp. 287-319, 1979. 【44】 E. Rabinowicz, Friction and Wear of Materials, John Wiley and Sons, Inc, NewYork, 1965. 【45】 K. G. Budinski, Surface engineering for wear resistance, Prantice-Hall, Inc, New Jersey, pp. 15-21, 1988. 【46】 J. H. Tylcyzak and A. Oregon, Abrasive Wear, ASM Handbook, Vol. 18, pp. 184-186, 1992. 【47】 K. Shimizu, T. Noguchi, T. Kamada , and H. Takasaki, “Progress of erosive wear in spheroidal graphite cast iron,” Wear, Vol. 198, pp. 150-155, 1996. 【48】 R. E. Winer and I. M. Hutchings, “The role of adiabatic sheat in solid particle erosion,” Wear, Vol. 34, pp. 141-148, 1975. 【49】 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚編著,工程材料科學,全華 科技圖書,第834-837頁,1995年。 【50】 A. V. Levy, “The platelet mechanism of erosion of ductile metals,” Wear, Vol. 108, pp. 1-21, 1986. 【51】 B. Stanisa and V. Ivusic, “Erosion behavior and mechanisms for steam turbine rotor blades,” Wear, Vol. 186-187, pp. 395-400, 1995. 【52】 M. G. Gee, R. H. Gee, and I. McNaught, “Stepwise erosion as a method for determining the mechanisms of wear in gas borne particulate erosion,” Wear, Vol. 255, pp. 44-54, 2003. 【53】 M. M. Stack and D. Pena, “Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures: construction of erosion mechanism and process control maps,” Wear, Vol. 203-204, pp. 489-497, 1997. 【54】 陳豐彥、何信威,燒結摩擦材料,粉末冶金手冊,中華民國粉末冶金協會,第445-457頁,1994年。 【55】 H. Karl and G. Zum, Microstructure and Wear of Materials, Elsevier Science Publishers B.V., New York, pp. 73-246, 1987. 【56】 吳威德,黃威智,范傑,“表面銲覆法”,中華民國專利,專利號碼:255748 ,民國95年。 【57】 E. Beraha and B. Shpigler, Color metallography, American societyfor metals, Metals park, Ohio, 1977. 【58】 汪建民,材料分析,國家圖書館出版,第433-470頁,民國87年。 【59】 “Standard Practice Conducting Dry Sand/Rubber Wheel Abrasion Tests,” ASTM G65-85 in 1990 Annual Book of ASTM Standards, Section 3, Vol. 03.02-Wear and Erosion, Metal Corrosion, pp. 235-247, 1990. 【60】 J. A. Pero-Sanz, D. Plaza, J. I. Verdeja, and J. Asensio, “Metallographic characterization of hypoeutectic martensitic white cast irons: Fe-Cr-C system,” Materials Characterization, Vol. 43, pp. 33-39, 1999. 【61】 L. Lu, H. Soda, and A. Mclean, “Microstructure and mechanical properties of Fe-Cr-C eutectic composites, ” Material science and engineering A, Vol. 347, pp.214-222, 2003. 【62】 Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, Chap.14, pp. 434-442, 1991. 【63】 Reed-Hill Abbaschian, Physical Metallurgy Principles, ed. 3, PWS Publishing Company, USA, Chap.14, pp. 471-476, 1991. 【64】 I. Barin, F. Sauert, E. S. Rhonho, and W. S. Sheng, Thermochemical Data of Pure Substances, Part I Ag -Kr/Part II La-Zr) (Hardcover), ed.2, Vch Publication, U.S.A, pp. 561-675, 1993. 【65】 E. D.Rabinowicz, Friction and Wear of Materials, John Wiley and Sons, New York, p. 168, 1965. 【66】 S. Buytoz, “Microstructural properties of M7C3 eutectic carbides in a Fe–Cr–C alloy,” Materials Letters, Vol. 60, pp. 605-608, 2006.
摘要: 本研究探討不同碳化鉻添加量對Fe-Cr-C硬面合金顯微組織與磨耗性質之影響,利用鎢極惰性氣體遮護電弧銲接法(Gas Tungsten Arc Welding, GTAW)將五組配比之鐵金屬粉末與碳鉻比為4:1之碳化鉻粉末混合作為合金填料(10、20、30、35、40 wt% 碳化鉻添加量),而後銲覆於SS400低碳鋼基材上。銲覆層之顯微結構藉由光學顯微鏡及X-ray繞射分析進行探討,並利用乾砂磨耗試驗分析其抗磨耗性質,且以掃瞄式電子顯微鏡(SEM)觀察磨耗面。 實驗結果顯示,以碳化鉻粉末作為銲覆合金填料可有效抑制碳與鉻元素之稀釋率,其碳與鉻之稀釋率最低分別為15.13%及17.75%。隨碳化鉻之添加量增加,其顯微結構分別為初晶沃斯田鐵相加沃斯田鐵與(Fe,Cr)3C之亞共晶組織,及沃斯田鐵與(Fe,Cr)7C3所組成之亞共晶、共晶與過共晶組織。且銲覆層中之碳化物數量隨碳化鉻之添加量增加,並發現銲覆層之硬度與抗磨耗性隨碳化物數量增多而呈上升趨勢。 以沃斯田鐵與(Fe,Cr)7C3型碳化物之亞共晶、共晶與過共晶組織比較,碳化物相分率由26.28%提升至60.76%。硬度測試與乾砂磨耗試驗之結果顯示,當碳化鉻添加量為10 wt%,其硬度值為HRC37.3,磨耗量為0.071g,添加量增至40 wt%時,可得最高硬度值HRC 65.7,其磨耗量下降至0.0039g。 乾砂磨耗試驗磨耗面之觀察結果顯示,顯微組織為初晶沃斯田鐵加沃斯田鐵與碳化物共晶之亞共晶組織時,磨耗機構以塑性犁溝及微切削為主;顯微組織為初晶沃斯田鐵與碳化物之共晶組織時,磨耗機構為不連續犁溝,而在初晶碳化物加沃斯田鐵與碳化物共晶之過共晶組織中,磨耗機構則以碳化物剝落為主,所有組織中又以沃斯田鐵與(Fe,Cr)7C3之過共晶組織之抗磨耗性最佳。
This research was studied on microstructural and abrasive characteristics of Fe-Cr-C hardfacing alloy with various addition of chromium carbides. Cladding fillers were mixed of chromium and iron powder with five proportion (10.20.30.35.40 wt% chromium carbides addition), which were deposited above SS400 by gas tungsten arc welding (GTAW). Optical microscope and X-ray diffraction were used to investigate the microstructural constituents. The wear resistance was estimated with sand wheel wear test, and the worn surfaces were observed by optical microscope and scanning electron microscope. Experimental results revealed that the dilution ratio of chromium and carbon element could be reduced when using chromium carbides as coating fillers, the lowest dilution efficiency of carbon and chromium was 9.5% and 6.5%, respectively. With the increasing of chromium carbides addition, the microstructure exhibited the hypoeutectic of austenite and (Fe,Cr)3C, the hypoeutectic, eutectic, and hypereutectic of austenite and (Fe,Cr)7C3. In the three types of microstructure composed by austenite and (Fe,Cr)7C3, the (Fe,Cr)7C3 fraction was raising from 26.28% to 60.76%. According to the results of hardness test and sand wheel test, the lowest hardness (HRC37.3) and wear loss (0.071g) were obtained when chromium carbides addition was 10 wt%, and the highest hardness was HRc 65.7 and weight loss was 0.071g when chromium carbides addition was 40 wt%. Wear surfaces observation showed that the wear mechanisms in hypoeutectic microstructure were ploughing and micro-cutting. However discontinuous ploughing in eutectic microstructure. Finally in hypereutectic microstructure the mechanism was the fracture of barbides. Among all kinds of microstructure the hypereutectic of austenite and (Fe,Cr)7C3 has the highest wear resistance.
URI: http://hdl.handle.net/11455/10196
其他識別: U0005-1506200611105700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1506200611105700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.