Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10200
標題: B2O3、CaF2加入CaO-Al2O3-SiO2脫硫劑對脫硫能力及耐火材侵蝕之研究
Study of Desulfurization Ability and Corrosion of Refractory with Addition of B2O3 and CaF2 into a Desulfurizer of CaO-Al2O3-SiO2 Series
作者: Wu, Cheng-Han
吳政翰
關鍵字: B2O3
氧化硼
CaF2
Desulfurization ability
氟化鈣
脫硫能力
出版社: 材料科學與工程學系所
引用: [1] 韓方君、曹貴有、苑士學、楊殿榮,“LF精煉爐渣性能分析”,爐外處理技術,第2期,第44-45頁,2007年。 [2] 徐慈鴻、李貽華,“氟汙染與植物”,行政院農業委員會農業藥物毒物試驗所技術專刊第142號,第1-11頁,1993年。 [3] H. Wang, D. Ni, H. Zhao, G. Li, and B. Li,“Effect of Fluxing Agent B2O3 on Melting Temperature of CaO-Based Refining Slag,”Special Steel, Vol. 30, No. 6, pp. 1-3, 2009. [4] 張玉柱編著,高爐煉鐵,冶金工業出版社,第244-264頁,1995年。 [5] 張玉柱編著,高爐煉鐵,冶金工業出版社,第11-14頁,1995年。 [6] 張玉柱編著,高爐煉鐵,冶金工業出版社,第105-106頁,1995年。 [7] 李博知編著,鐵水爐外脫硫技術分析,天津冶金,第12-15頁,2002年。 [8] 張榮生編著,鋼鐵生產中的脫硫,冶金工業出版社,第91-93頁,1986年。 [9] 劉燕、張廷安、王強、張亦平、赫冀成,“KR攪拌技術的水模型實驗研究”,工業爐,第29卷,第1期,第1-4頁,2007年。 [10] 歐陽德剛、王慶方、劉守堂,“KR脫硫攪拌器的技術現狀與發展方向”,武鋼技術,第43卷,第5其,第54-58頁,2005年。 [11] 馮捷、張紅文主編,煉鋼基礎知識,冶金工業出版社,第1-3頁,2007年。 [12] I. H. Jung,“Overview of the application of thermodynamic databases to steelmaking processes,”CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 34, No. 3, pp. 332-362, 2010. [13] H. Huang, J. Wei, N. Yu, and H. Hu,“Development of RH Refining Technology,”Shanghai Metals, Vol. 25, No. 6, pp. 6-10, 2003. [14] X. G. Ai, Y. P. Bao, W. Jiang, J. H. Liu, P. H. Li, and T. Q. Li,“Periodic Flow Characteristics During RH Vacuum Circulation Refining,”International Journal of Minerals, Metallurgy and Materials, Vol. 17, No. 1, pp. 17-21, 2010. [15] B. S. Liu, G. S. Zhu, H. X. Li, B. H. Li, Y. Cui, and A.M. Cui,“Decarburization Rate of RH Refining for Ultra Low Carbon Steel,” International Journal of Minerals, Metallurgy and Materials, Vol. 17, No. 1, pp. 22-27, 2010. [16] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第115-118頁,2006年。 [17] H. X. Tian, Z. Z. Mao, and A. N. Wang,“Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF,”Journal of Iron and Steel Research, Vol. 16, No. 4, pp. 1-6, 2009. [18] E. Ismail, Y. Yasar, and C. Unal,“Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace in Steelmaking Facility in Turkey,” Journal of Iron and Steel Research, Vol. 14, No. 5, pp. 1-6, 2007. [19] C. Unal and T. Murat,“Steady State Heat Transfer of Ladle Furnace During Steel Production Process,” Journal of Iron and Steel Research, Vol. 13, No. 3, pp. 18-20, 25, 2006. [20] C. Liu,“Development Situation of Ladle Furnace (LF) in China,”Special Steel, Vol. 22, No. 2, pp. 31-33, 2001. [21] 宋文林主編,電弧爐煉鋼,冶金工業出版社,第1-4頁,1995年。 [22] 蔡開科、張立峰、劉中柱,“純淨鋼生產技術及現狀”,河南冶金,第11卷,第3期,第3-10頁,第11卷,第4期,第3-8頁,2003年。 [23] J. Yang, T. Yamasaki, and M. Kuwabara,“Behavior of Inclusions in Deoxidation Process of Molten Steel with in situ Produced Mg Vapor,”ISIJ International, Vol. 47, No. 5, pp. 699-708, 2007. [24] Y. Wang and S. Sridhar,“The Effect of Gas Flow Rate on The Evolution of The Surface Oxide on A Molten Low Carbon Al Killed Steel,”Journal of Materials Science, Vol. 40, No. 9-10, pp. 2179-2184, 2005. [25] V. Ludlov,“Oxygen in steelmaking: Towards cleaner steels,”Ironmaking and Steelmaking, Vol. 29, No. 2, 2002. [26] Z. H. Tian, B. H. Li, X. M. Zhang, and Z. H. Jiang,“Double Slag Operation Dephosphorization in BOF for Producing Low Phosphorus Steel,”Journal of Iron and Steel Research, Vol. 16, No. 3, pp. 6-14, 2009. [27] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第78-79頁,2006年。 [28] 蔣國昌主編,純淨鋼及二次精煉,上海科學技術出版社,第244頁,1995年。 [29] 馮捷、張紅文主編,煉鋼基礎知識,冶金工業出版社,第69-70頁,2007年。 [30] University of Tennessee, Dept. of Materials Science and Engineering. MSE 300 Materials Laboratory Procedures. [31] D. Jaffre, Effect of the Elements on Steel Properties: A Summary, Chaparral Steel, Texas, pp.1-18, 2003. [32] R. C. Sharma and Y. A. Chang, “Thermodynamics and Phase Relationships of Transition Metal-Sulfur Systems: Part Ⅲ.Thermodynamic Properties of the Fe-S Liquid Phase and the Calculation of the Fe-S Phase Diagram,” Metallurgical Transactions B, Vol. 10, No. 1, pp. 103-108, 1979. [33] www.factsage.com, Fe-S-Gas Phase Diagram. [34] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第95-96頁,2006年。 [35] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第48-51頁,2009年。 [36] 馮捷、張紅文主編,煉鋼基礎知識,冶金工業出版社,第167頁,2007年。 [37] Y. Min, D. Y. Wang, C. J. Liu, and M. F. Jiang,“Study on Forming Performance of LF Refining Slag with High Basicity,”Journal of Northeastern University(Natural Science), Vol. 29, No. 3, pp. 350-353, 2008. [38] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第63頁,2009年。 [39] K. Wu and Z. Liang,“Industrial Experiment of Desulfurization in LF Refining Process at Baotou Iron and Steel Co. ,Ltd,”Iron and Steel, Vol. 36, No. 8, pp. 16-18, 15, 2001. [40] R. J. Fruehan, Ladle Metallurgy, Principles and Practices, A Publication of the Iron and Steel Society, Warrendale, Pennsylvania, pp. 1-2, 1985. [41] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第28-39頁,2009年。 [42] 馮捷、張紅文主編,煉鋼基礎知識,冶金工業出版社,第164-168,2007年。 [43] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第96-100頁,2006年。 [44] 郝寧、王海濤、王新華、李宏、王萬軍,“硫容量與硫分配比的計算與分析”,北京科技大學學報,第28卷,第1期,第25-28頁,2006年。 [45] S. L. Chen, Y. C. Lu, and Q. S. Ma,“Application of Sulfur Distribution Ratio in Optimization of LF Ladle Slag Composition,”Steelmaking, Vol. 25, No. 3, pp. 37-41, 2009. [46] X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo,“Ratio between CaO-SiO2-MgO-Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Iron and Molecule Coexistence Theory,”ISIJ International, Vol. 49, No. 12, pp. 1828-1837, 2009. [47] E. T. Turkdogan,“Physicochemical Aspects of Reactions in Ironmaking and Steelmaking Processes,”Transactions ISIJ, Vol. 24, No. 8, pp. 591-611, 1984. [48] A. T. Andersson, P. G. Jönsson, and M. M. Nzotta, “Application of the Sulfuride Capacity Concept on High Basicity Ladle Slags Used in Bearing-Steel Production,” ISIJ International, Vol. 39, No. 11, 1999. [49] H. Mitsutaka, K. Susumu, and B. Y. Shiro,“Sulphide Capacities of CaO-Al2O3-MgO and CaO-Al2O3-SiO2 Slags,”ISIJ International, Vol. 33, No. 1, pp. 36-42, 1993. [50] Y. Taniguchi, N. Sano, and S. Seetharaman,“Sulphide Capacities of CaO-Al2O3-SiO2-MgO-MnO Slag in the Temperature Range 1673-1773K,”ISIJ International, Vol. 49, No. 2, pp. 156-163, 2009. [51] M. M. Nzotta, D. Sichen, and S. Seetharaman,“A Study of the Sulfide Capacities of Iron-Oxide Containing Slags,”Metallurgical and Materials Transations B, Vol. 30, No. 5, pp. 909-920, 1999. [52] A. D. Pelton, G. Eriksson, and A. Romero-Serrano,“Calculation of Sulfide Capacities of Multicomponent Slags,”Metallurgical and Materials Transations B, Vol. 24, No. 5, pp. 817-825, 1993. [53] C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo,“A Aulphide Capacity Prediction Model of CaO-SiO2-MgO-Al2O3 Ironmaking Slags Based on the Iron and Molecule Coexistence Theory,”ISIJ International, Vol. 50, No. 10, pp. 1362-1372, 2010. [54] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣, 化學工業出版社,第11-13頁,2009年。 [55] 王書桓、唐國章、李福民、許志平、王碩明、劉悅欽,“12CaO.7Al2O3型精煉合成渣物性與脫硫試驗”,河北理工學院學報,第23卷,第3期,第9-13頁,2001年。 [56] Y. Wang, R. Zhu, X. Li, S. Li, and J. Sun,“Effect of Refining Slag Compounding on Desulphurization of Extra Low Sulphur Steel,”Special Steel, Vol. 23, No. 2, pp. 17-19, 2002. [57] Y. Chen and Y. Wang,“Effect of Ingredient of Refining Slag on Steel-Slag Sulfur Partition Ratio,”Special Steel, Vol. 28, No. 4, pp. 36-38, 2007. [58] X. M. Gao, L. J. Sun, G. J. Li, and J. H. Zeng,“Effect of Constituents of BaO, Na2O Bearing Refining Slag Series on Sulfur Distribution Ratio,”Steelmaking, Vol. 24, No. 6, pp. 33-36, 2008. [59] Z. Zhu, Q. Dai, G. Li, H. Wang, and M. Xu,“Effect of BaO and Li2O on Melting Point and Viscosity of CaO-Based Fluxes,”Shanghai Metals, Vol. 27, No. 5, pp. 20-22,30, 2005. [60] 祝貞學、李桂荣、王宏明、戴起勛、李波,“BaO, B2O3對CaO基精煉渣熔化性能及脫硫能力的影響”,北京科技大學學報,第28卷,第8期,第725-727頁,2006年。 [61] S. Zhang and W. E. Lee,“Use Phase Diagram in Studies of Refractories Corrosion,”International Materials Reviews, Vol. 45, No. 2, pp. 41-58, 2000. [62] T. Gladman,“Developments in Inclusions and Their Effect on Steel Properties,”Ironmaking and Steelmaking, Vol. 19, No. 6, pp. 457-463, 1992. [63] D. Zhan, Z. Jian, W. Wang, L. Liang, Z. Guo, and C. Li,“Experimental Study of CaO-Al2O3-CaF2-MgO-SiO2 Pre-Melted Slag For Molten Steel Deep Desulphurization,”Steelmaking, Vol. 18, No. 6, pp. 33-36, 2002. [64] D. A. Jerebtsov and G. G. Mikhailov,“Phase Diagram of CaO-Al2O3 System,”Ceramics International, Vol. 27, No. 1, pp. 25-28, 2001. [65] L. C. Oertel and A. C. eSilva, “Application of Thermodynamic Modeling to Slag-Metal Equilibrian in Steelmaking,”Calphad, Vol. 23, No. 3-4, pp. 379-391, 1999. [66] E. Karamanova, G. Avdeev, and A. Karamanov,“Ceramics From Blast Furnace Slag, Kaolin and Quartz,”Journal of the European Ceramic Society, Vol. 31, No. 6, pp. 989-998, 2011. [67] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第63-66頁,2009年。 [68] G. Wen, S. Sridhar, P. Tang, X. Qi, and Y. Liu,“Development of Fluoride-Free Mold Powders for Peritectic Steel Slab Casting,”ISIJ International, Vol. 47, No. 8, pp. 1117-1125, 2007. [69] G. R. Li, H. M. Wang, Q. X. Dai, Y. T. Zhao, and J. S. Li,“Physical Properties and Regulating Mechanism of Fluoride-Free and Harmless B2O3-Containing Mould Flux,”Journal of Iron and Steel Research, Vol. 14, No. 1, pp. 25-28, 2007. [70] A. B. Fox, K. C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J. J. Laraudogoitia, and J. Gisby,“Development of Fluoride-Free Fluxes for Billet Casting,”ISIJ International, Vol. 45, No. 7, pp. 1051-1058, 2005. [71] H. Wang, G. Li, Q. Dai, Y. Lei, Y. Zhao, B. Li, G. Shi, and Z. Ren,“Effect of Additives on Viscosity of LATS Refining Ladle Slag,”ISIJ International, Vol. 46, No. 5, pp. 637-640, 2006. [72] H. M. Wang, G. R. Li, B. Li, X. J. Zhang, and Y. Q. Yan,“Effect of B2O3 on CaO-Based Ladle Refining Slag,”Journal of Iron and Steel Research, Vol. 17, No. 10, pp. 18-22, 2010. [73] X. Yu, Q. Shi, R. Zhai, Z. Zhu, L. Cheng, and Q. Luan,“Influence of B2O3 on Melting Characteristics of CaO-Al2O3-SiO2-MgO-CaF2 Pentary Slag Series,”Special Steel, Vol. 27, No. 4, pp. 5-7, 2006. [74] www.factsage.com, B2O3-CaO-Gas Phase Diagram. [75] www.factsage.com, B2O3-MgO-Gas Phase Diagram. [76] www.factsage.com, B2O3-SiO2 Phase Diagram. [77] J. A. Duffy and M. D. Ingram,“An Interpretation of Glass Chemistry in Terms of the Optical Basicity Concept,”Journal of Non-Crystalline Solids, Vol. 21, No. 3, pp. 373-410, 1976. [78] D. J. Sosinsky and I. D. Sommerville,“The Composition and Temperature Dependence of the Sulfide Capacity of Metallurgical Slags,”Metallurgical Transations B, Vol. 17, No. 2, pp. 331-337, 1986. [79] G. H. Zhang and K. C. Chou,“Model for Evaluating Density of Molten Slag With Optical Basicity,”Journal of Iron and Steel Research, Vol. 17, No. 4, pp. 1-4, 2010. [80] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第56頁,2009年。 [81] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第81頁,2009年。 [82] S. H. Seok, S. M. Jung, Y. S. Lee, and D. J. Min,“Viscosity of Highly Basic Slags,”ISIJ International, Vol. 47, No. 8, pp. 1090-1096, 2007. [83] M. Persson, M. Görnerup, and S. Seetharaman,“Viscosuty Measurements of Some Mould Flux Slags,”ISIJ International, Vol. 47, No. 10, pp. 1533-1540, 2007. [84] X. J. Yang, C. Z. Xia, X. M. Wang, B. M. Cui, and T. X. Tai,“Practice of Accelerated Desulfurization Process For 150 t LF,”Steelmaking, Vol. 22, No. 1, pp. 16-18, 2006. [85] E. Pretorius, Slag Short Course, LWB Refractories, Process Tech. Group, pp.105-121. [86] J. Yang, M. Kuwabara, T. Sakai, N. Uchida, Z. Liu, and M. Sano,“Simultaneous Desulfurization and Deoxidation of Molten Steel with in Situ Produced Magnesium Vapor,”ISIJ International, Vol. 47, No. 3, pp. 418-426, 2007. [87] T. Heput, E. Ardelean, A. Socalici, S. Maksay, and A. Gavanescu,“Steel Desulphurization with Synthetic Slag,”Revista De Metalurgia, Vol. 43, No. 1, pp. 42-49, 2006. [88] S. Pirker, P. Gittler, H. Pirker, and J. Lehner,“CFD, A Design Tool for A New Hot Metal Desulfurization Technology,”Applied Mathematical Modelling, Vol. 26, No. 2, pp. 337-350, 2002. [89] B. Li, H. Yin, C. Q. Zhou, and F. Tsukihashi,“Modeling of Three-Phase Flows and Behavior of Slag/Steel Interface in An Argon Gas Stirred Ladle,”ISIJ International, Vol. 48, No. 12, pp. 1704-1711, 2008. [90] D. Zhan, Z. Jiang, L. Liang, Z. Sun, W. Wang, W. Gu, J. Wang, and Y. Wang,“Experimental Research on Premelted Refining Slag Desulfurization in 150 t EAF-LF Refining Process,”Steelmaking, Vol. 19, No. 2, pp. 48-50,58, 2003. [91] Z. F. Zhao, J. Y. Zhao, X. M. Li, and J. P. Wang,“Production Practice About Desulfurization of Steel For 100 t Ladle Furnace Refining Process,”China Metallurgy, Vol. 19, No. 4, pp. 18-22, 2009. [92] M. Sutcu and S. Akkurt,“Utilization of Recycle Paper Processing Residues and Clay of Different Sources for the Production of Porous Anorthite Ceramics,”Journal of the European Ceramic Society, Vol. 30, No. 8, pp. 1785-1793, 2010. [93] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, New York, pp. 359, 2003. [94] 王宏明、李桂榮、徐明喜、李波、張學軍、史國敏,“改質劑對LATS精煉鋼包渣黏度的影響”,過程工程學報,第6卷,第2期,第227-230頁,2006年。 [95] 李玉萍、徐曉偉、王碧燕、張永杰,“LiF和CaF2助熔效果的研究”,北京科技大學學報,第24卷,第4期,第429-431頁,2002年。 [96] F. Shahbazian, D. Sichen and S. Seetharaman, “The Effect of Addiction of Al2O3 on the Viscosity of CaO-FeO-SiO2-CaF2 Slags,”ISIJ International, Vol. 42, No. 2, pp. 155-162. [97] S. Chattopadhyay and A. Mitchell, “Thermochemistry of Calcium Oxide and Calcium Hydroxide in Fluoride Slags,”Metallurgical and Materials Transactions B, Vol. 21, No. 4, pp. 621-627, 1990.
摘要: 本研究使用CaO-Al2O3-SiO2系列的脫硫劑來進行實驗,在CaO-Al2O3-SiO2系脫硫劑中添加不同比例的B2O3與CaF2,來探討此兩種助熔劑對CaO-Al2O3-SiO2系脫硫劑造成的影響及B2O3是否可用來取代CaF2在脫硫劑中所扮演的角色。 本實驗使用高週波熔煉爐來熔解低碳鋼材,並在熔解後的鋼液中添加FeS調整硫含量,使鋼液中的硫含量達到實驗所需,之後添加Al條進行脫氧,降低鋼液中氧含量以利後面的脫硫反應進行,最後投入脫硫劑進行脫硫反應。完成熔煉製程之後,取出鋼錠、渣樣及坩堝分別進行分析。 實驗結果發現,在CaO-Al2O3-SiO2系脫硫劑中,隨著添加B2O3越多而CaF2越少,則脫硫劑的熔點越低。而添加不同比例的B2O3與CaF2,會明顯的影響短時間(15分鐘)熔煉內的脫硫效率,尤其含B2O3越多的脫硫劑在短時間內的脫硫效率越佳,但在較長時間(30分鐘)的熔煉過程中,脫硫劑的脫硫效率則不受添加不同比例的B2O3與CaF2的影響。在CaO-Al2O3-SiO2系脫硫劑中,添加CaF2為助熔劑之組別,對坩堝會有嚴重的侵蝕作用,隨的CaF2添加量的增加,熔渣對坩堝的侵蝕作用也跟著提高,而未添加助熔劑的脫硫劑對坩堝的侵蝕能力最弱。
URI: http://hdl.handle.net/11455/10200
其他識別: U0005-1808201111152600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201111152600
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.