Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10218
標題: Fabrication of Silicon Thin Films Using Hot-Wire CVD for Solar Cell Applications
以熱燈絲化學氣相沉積法研製矽薄膜及其在太陽電池之應用
作者: 吳秉叡
Wu, Bing-Rui
關鍵字: Chemical vapor deposition
化學氣相沉積
Hot-wire CVD
Silicon
Silicon carbide
Heterojunction
Solar cell
熱燈絲化學氣相沉積

碳化矽
異質接面
太陽電池
出版社: 材料科學與工程學系所
引用: [1] T. Markvart, Solar electricity vol. 6: John Wiley & Sons Inc., 2000. [2] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, "Limiting efficiency of silicon solar cells," IEEE Transactions on Electron Devices, vol. 31, pp. 711-716, 1984. [3] J. Zhao, A. Wang, P. Altermatt, and M. Green, "Twenty four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss," Applied Physics Letters, vol. 66, pp. 3636-3638, 1995. [4] D. Carlson and C. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671-673, 1976. [5] K. W. Mitchell, C. Eberspacher, J. H. Ermer, K. L. Pauls, and D. N. Pier, "CuInSe2 cells and modules," IEEE Transactions on Electron Devices, vol. 37, pp. 410-417, 1990. [6] H. Sterling and R. Swann, "Chemical vapour deposition promoted by rf discharge," Solid-State Electronics, vol. 8, pp. 653-654, 1965. [7] R. Chittick, J. Alexander, and H. Sterling, "The preparation and properties of amorphous silicon," Journal of the Electrochemical Society, vol. 116, pp. 77-81, 1969. [8] A. Lewis, G. Connell, W. Paul, J. Pawlik, and R. Temkin, "Hydrogen incorporation in amorphous Germanium," in International Conference on Tetrahedrally Bonded Amorphous Semiconductors Yorktown Heights, N.Y., U.S.A, 1974, p. 27. [9] A. Triska, D. Dennison, and H. Fritzsche, "Hydrogen content in amorphous-Ge and Si prepared by RF decomposition of GeH4 and SiH4," Bulletin of American Physics Society, vol. 20, pp. 392-397, 1975. [10] A. Matsuda, "Formation kinetics and control of microcrystallite in uc-Si:H from glow discharge plasma," Journal of Non-Crystalline Solids, vol. 59, pp. 767-774, 1983. [11] M. Faraji, S. Gokhale, S. Choudhari, M. Takwale, and S. Ghaisas, "High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications," Applied Physics Letters, vol. 60, pp. 3289-3291, 1992. [12] J. K. Rath, H. Meiling, and R. E. I. Schropp, "Purely intrinsic poly-silicon films for nip solar cells," Japanese Journal of Applied Physics, vol. 36, pp. 5436-5443, 1997. [13] P. Muller, I. Beckers, E. Conrad, L. Elstner, and W. Fuhs, "Application of low-temperature electron cyclotron resonance CVD to silicon thin-film solar cell preparation," in 25th IEEE Photovoltaic Specialists Conference, Washington, DC , USA, 1996, pp. 673-676. [14] S. Koynov, S. Grebner, P. Radojkovic, E. Hartmann, R. Schwarz, L. Vasilev, R. Krankenhagen, I. Sieber, W. Henrion, and M. Schmidt, "Initial stages of microcrystalline silicon film growth," Journal of Non-Crystalline Solids, vol. 198, pp. 1012-1016, 1996. [15] S. Hamma and P. Roca i Cabarrocas, "Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution," Journal of non-crystalline solids, vol. 227, pp. 852-856, 1998. [16] H. Matsumura, A. Heya, R. Iizuka, A. Izumi, A. Q. He, and N. Otsuka, "Low-temperature formation of device-quality polysilicon films by Cat-CVD method," 1997, pp. 983-988. [17] D. Peiro, J. Bertomeu, C. Voz, M. Fonrodona, D. Soler, and J. Andreu, "Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD," Materials Science and Engineering B, vol. 69, pp. 536-541, 2000. [18] V. Dalal, T. Maxson, and K. Han, "Microcrystalline Si and (Si, Ge) solar cells," in 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK , USA, 2001, pp. 792-795. [19] R. E. I. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology: Kluwer Academic Publishers, 1998. [20] R. Schropp, K. Feenstra, E. Molenbroek, H. Meiling, and J. Rath, "Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapour deposition," Philosophical Magazine Part B, vol. 76, pp. 309-321, 1997. [21] H. Wiesmann, A. Ghosh, T. McMahon, and M. Strongin, "a Si: H produced by high temperature thermal decomposition of silane," Journal of Applied Physics, vol. 50, pp. 3752-3754, 1979. [22] H. Matsumura and H. Tachibana, "Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2," Applied Physics Letters, vol. 47, pp. 833-835, 1985. [23] H. Matsumura, "Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon," Japanese Journal of Applied Physics, vol. 25, pp. L949-L951, 1986. [24] H. Matsumura, "Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon," Journal of Applied Physics, vol. 65, pp. 4396-4402, 1989. [25] M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, "Amorphous and microcrystalline silicon by hot wire chemical vapor deposition," Journal of Applied Physics, vol. 79, pp. 2699-2706, 1996. [26] A. Mahan, J. Carapella, B. Nelson, R. Crandall, and I. Balberg, "Deposition of device quality, low H content amorphous silicon," Journal of Applied Physics, vol. 69, pp. 6728-6730, 1991. [27] J. Doyle, R. Robertson, G. Lin, M. He, and A. Gallagher, "Production of high quality amorphous silicon films by evaporative silane surface decomposition," Journal of Applied Physics, vol. 64, pp. 3215-3223, 1988. [28] E. C. Molenbroek, A. Mahan, E. Johnson, and A. Gallagher, "Film quality in relation to deposition conditions of a SI: H films deposited by the "hot wire" method using highly diluted silane," Journal of Applied Physics, vol. 79, pp. 7278-7292, 1996. [29] S. Bauer, B. Schroder, and H. Oechsner, "The effect of hydrogen dilution on the microstructure and stability of a-Si: H films prepared by different techniques," Journal of Non-Crystalline Solids, vol. 227, pp. 34-38, 1998. [30] M. Van Veen and R. Schropp, "Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells," Journal of Applied Physics, vol. 93, pp. 121-125, 2003. [31] P. A. T. T. van Veenendaal, O. L. J. Gijzeman, J. K. Rath, and R. Schropp, "The influence of different catalyzers in hot-wire CVD for the deposition of polycrystalline silicon thin films," Thin Solid Films, vol. 395, pp. 194-197, 2001. [32] K. Ishibashi, "Development of the Cat-CVD apparatus and its feasibility for mass production," Thin Solid Films, vol. 395, pp. 55-60, 2001. [33] A. Mahan, "Hot wire chemical vapor deposition of Si containing materials for solar cells," Solar Energy Materials and Solar Cells, vol. 78, pp. 299-327, 2003. [34] H. Matsumura, "Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method," Japanese Journal of Applied Physics, vol. 37, pp. 3175-3187, 1998. [35] F. Diehl, M. Scheib, B. Schroder, and H. Oechsner, "Enhanced optical absorption in hydrogenated microcrystalline silicon: an absorption model," Journal of Non-Crystalline Solids, vol. 227, pp. 973-976, 1998. [36] S. Morrison and A. Madan, "Deposition of amorphous and microcrystalline silicon using a graphite filament in the hot wire chemical vapor deposition technique," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, pp. 2817-2819, 2001. [37] W. Ruihua, L. Zhiqiang, L. Li, and L. Jahe, "Study of hot wire chemical vapor deposition technique for silicon thin film," Solar Energy Materials and Solar Cells, vol. 62, pp. 193-199, 2000. [38] P. Van Veenendaal, C. Van Der Werf, J. Rath, and R. Schropp, "Influence of grain environment on open circuit voltage of hot-wire chemical vapour deposited Si: H solar cells," Journal of Non-Crystalline Solids, vol. 299, pp. 1184-1188, 2002. [39] J. Guillet, C. Niikura, J. Bouree, J. Kleider, C. Longeaud, and R. Bruggemann, "Microcrystalline silicon deposited by the hot-wire CVD technique," Materials Science and Engineering B, vol. 69, pp. 284-288, 2000. [40] R. E. I. Schropp, "Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost," Thin Solid Films, vol. 403, pp. 17-25, 2002. [41] Y. Akasaka, presented at the 4th International Conference on Hot-Wire CVD Process, Takayama, Gifu, Japan, 2006. [42] H. Matsumura and K. Ohdaira, "Recent situation of industrial implementation of Cat-CVD technology in Japan," Thin Solid Films, vol. 516, pp. 537-540, 2008. [43] H. Matsumura and K. Ohdaira, "New application of Cat-CVD technology and recent status of industrial implementation," Thin Solid Films, vol. 517, pp. 3420-3423, 2009. [44] J. Meier, R. Fluckiger, H. Keppner, and A. Shah, "Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior?," Applied Physics Letters, vol. 65, pp. 860-862, 1994. [45] J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fa , E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, "Microcrystalline silicon and the impact on micromorph tandem solar cells," Solar Energy Materials and Solar Cells, vol. 74, pp. 457-467, 2002. [46] B. Schroeder, "Status report: solar cell related research and development using amorphous and microcrystalline silicon deposited by HW (Cat) CVD," Thin Solid Films, vol. 430, pp. 1-6, 2003. [47] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, "HITTM cells-high efficiency crystalline Si cells with novel structure," Progress in Photovoltaics: Research and Applications, vol. 8, pp. 503-513, 2000. [48] M. Van Cleef, J. Rath, F. Rubinelli, C. Van Der Werf, R. Schropp, and W. Van der Weg, "Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells," Journal of Applied Physics, vol. 82, pp. 6089-6095, 1997. [49] J. Pla, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo, and F. Zignani, "Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition," Thin Solid Films, vol. 405, pp. 248-255, 2002. [50] B. Jagannathan and W. Anderson, "Defect study in amorphous silicon/crystalline silicon solar cells by thermally stimulated capacitance," Journal of Applied Physics, vol. 82, pp. 1930-1935, 1997. [51] C. Voz, I. Martin, A. Orpella, J. Puigdollers, M. Vetter, R. Alcubilla, D. Soler, M. Fonrodona, J. Bertomeu, and J. Andreu, "Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films," Thin Solid Films, vol. 430, pp. 270-273, 2003. [52] M. Kunst, S. Von Aichberger, G. Citarella, and F. Wunsch, "Amorphous silicon/crystalline silicon heterojunctions for solar cells," Journal of Non-Crystalline Solids, vol. 299, pp. 1198-1202, 2002. [53] P. J. Goodhew, F. J. Humphreys, and R. Beanland, Electron microscopy and analysis: Taylor & Francis Group, 2001. [54] L. Reimer and H. Kohl, Transmission electron microscopy: physics of image formation: Springer Verlag, 2008. [55] M. Brodsky, M. Cardona, and J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering," Physical Review B, vol. 16, pp. 3556-3571, 1977. [56] Z. Iqbal and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon," Journal of Physics C: Solid State Physics, vol. 15, pp. 377-392, 1982. [57] B. E. Warren, X-ray Diffraction: Dover Pubns, 1990. [58] H. P. Klug and L. E. Alexander, "X-ray diffraction procedures: for polycrystalline and amorphous materials," X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., vol. 1, 1974. [59] N. Maley, "Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys," Physical Review B, vol. 46, pp. 2078-2085, 1992. [60] A. Langford, M. Fleet, B. Nelson, W. Lanford, and N. Maley, "Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon," Physical Review B, vol. 45, pp. 13367-13377, 1992. [61] Y. Veschetti, J. C. Muller, J. Damon-Lacoste, P. Roca i Cabarrocas, A. Gudovskikh, J. P. Kleider, P. J. Ribeyron, and E. Rolland, "Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates," Thin Solid Films, vol. 511, pp. 543-547, 2006. [62] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, pp. 670-673, 2009. [63] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352, 2010. [64] H. Yamamoto, Y. Takaba, Y. Komatsu, M. J. Yang, T. Hayakawa, M. Shimizu, and H. Takiguchi, "High-efficiency uc-Si/c-Si heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 74, pp. 525-531, 2002. [65] H. Matsumura, H. Umemoto, and A. Masuda, "Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon," Journal of Non-Crystalline Solids, vol. 338, pp. 19-26, 2004. [66] Y. Song and W. Anderson, "Amorphous silicon/p-type crystalline silicon heterojunction solar cells with a microcrystalline silicon buffer layer," Solar Energy Materials and Solar Cells, vol. 64, pp. 241-249, 2000. [67] V. A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and J. Yi, "Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell," Solar Energy, vol. 84, pp. 777-783, 2010. [68] E. Centurioni, D. Iencinella, R. Rizzoli, and F. Zignani, "Silicon heterojunction solar cell: a new buffer layer concept with low-temperature epitaxial silicon," IEEE Transactions on Electron Devices, vol. 51, pp. 1818-1824, 2004. [69] B. Jagannathan and W. Anderson, "Interface effects on the carrier transport and photovoltaic properties of hydrogenated amorphous silicon/crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 44, pp. 165-176, 1996. [70] Y. Song, M. Park, E. Guliants, and W. Anderson, "Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 64, pp. 225-240, 2000. [71] H. M. Branz, C. W. Teplin, D. L. Young, M. R. Page, E. Iwaniczko, L. Roybal, R. Bauer, A. Mahan, Y. Xu, and P. Stradins, "Recent advances in hot-wire CVD R&D at NREL: From 18% silicon heterojunction cells to silicon epitaxy at glass-compatible temperatures," Thin Solid Films, vol. 516, pp. 743-746, 2008. [72] H. S. Povolny and X. Deng, "High-rate deposition of amorphous silicon films using hot-wire CVD with a coil-shaped filament," Thin Solid Films, vol. 430, pp. 125-129, 2003. [73] E. Iwaniczko, Y. Xu, R. Schropp, and A. Mahan, "Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD," Thin Solid Films, vol. 430, pp. 212-215, 2003. [74] Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, F. Finger, and X. Geng, "Microcrystalline silicon solar cells deposited at high rates," Journal of applied physics, vol. 97, pp. 114913-1-114913-12, 2005. [75] T. Wang, E. Iwaniczko, M. Page, D. Levi, Y. Yan, H. Branz, and Q. Wang, "Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells," Thin Solid Films, vol. 501, pp. 284-287, 2006. [76] J. Rath, H. Meiling, and R. Schropp, "Low-temperature deposition of polycrystalline silicon thin films by hot-wire CVD," Solar Energy Materials and Solar Cells, vol. 48, pp. 269-277, 1997. [77] S. S. Lee, M. S. Ko, C. S. Kim, and N. M. Hwang, "Gas phase nucleation of crystalline silicon and their role in low-temperature deposition of microcrystalline films during hot-wire chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 3659-3662, 2008. [78] J. Damon-Lacoste, P. Roca i Cabarrocas, P. Chatterjee, Y. Veschetti, A. Gudovskikh, J. Kleider, and P. Ribeyron, "About the efficiency limits of heterojunction solar cells," Journal of Non-Crystalline Solids, vol. 352, pp. 1928-1932, 2006. [79] Y. Xu, Z. Hu, H. Diao, Y. Cai, S. Zhang, X. Zeng, H. Hao, X. Liao, E. Fortunato, and R. Martins, "Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers," Journal of Non-Crystalline Solids, vol. 352, pp. 1972-1975, 2006. [80] A. Masuda and H. Matsumura, "Guiding principles for device-grade hydrogenated amorphous silicon films and design of catalytic chemical vapor deposition apparatus," Thin Solid Films, vol. 395, pp. 112-115, 2001. [81] M. Tucci and G. De Cesare, "17% efficiency heterostructure solar cell based on p-type crystalline silicon," Journal of Non-Crystalline Solids, vol. 338, pp. 663-667, 2004. [82] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, and S. Nakano, "Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)," Japanese Journal of Applied Physics, vol. 31, pp. 3518-3522, 1992. [83] N. Jensen, U. Rau, R. Hausner, S. Uppal, L. Oberbeck, R. Bergmann, and J. Werner, "Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells," Journal of Applied Physics, vol. 87, pp. 2639-2645, 2000. [84] J. Pallares and R. Schropp, "Role of the buffer layer in the active junction in amorphous-crystalline silicon heterojunction solar cells," Journal of Applied Physics, vol. 88, pp. 293-299, 2000. [85] S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim, and K. H. Yoon, "Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell," Solar Energy Materials and Solar Cells, vol. 92, pp. 298-301, 2008. [86] M. Tucci, "Optimization of n-doping in n-type a-SI:H/p-type textured c-Si heterojunction for photovoltaic applications," Solar Energy Materials and Solar Cells, vol. 57, pp. 249-257, 1999. [87] K. Mackenzie, J. Eggert, D. Leopold, Y. Li, S. Lin, and W. Paul, "Structural, electrical, and optical properties of a-Si1-x Gex: H and an inferred electronic band structure," Physical Review B, vol. 31, pp. 2198-2213, 1985. [88] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 84-92, 2011. [89] H. Fujiwara and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si: H/c-Si solar cells," Applied Physics Letters, vol. 90, pp. 013503-013503-3, 2007. [90] R. Stangl, A. Froitzheim, M. Schmidt, and W. Fuhs, "Design criteria for amorphous/crystalline silicon heterojunction solar cells-a simulation study," in 3rd World Conference on Pliofovoltaic Energy Conversion, Osaka, Japan, 2003, pp. 1005-1008 Vol. 2. [91] N. Jensen, R. Hausner, R. Bergmann, J. Werner, and U. Rau, "Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells," Progress in Photovoltaics: Research and Applications, vol. 10, pp. 1-13, 2002. [92] M. Tucci, M. Della Noce, E. Bobeico, F. Roca, G. De Cesare, and F. Palma, "Comparison of amorphous/crystalline heterojunction solar cells based on n-and p-type crystalline silicon," Thin Solid Films, vol. 451, pp. 355-360, 2004. [93] J. Zhao, A. Wang, P. P. Altermatt, M. A. Green, J. P. Rakotoniaina, and O. Breitenstein, "High efficiency PERT cells on n-type silicon substrates," in 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 218-221. [94] Y. W. Ok, T. Y. Seong, D. Kim, S. K. Kim, J. C. Lee, K. H. Yoon, and J. Song, "Electrical and optical properties of point-contacted a-Si: H/c-Si heterojunction solar cells with patterned SiO2 at the interface," Solar Energy Materials and Solar Cells, vol. 91, pp. 1366-1370, 2007. [95] M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad, and K. Maydell, "Physical aspects of a-Si: H/c-Si hetero-junction solar cells," Thin solid films, vol. 515, pp. 7475-7480, 2007. [96] S. Tardon, M. Rosch, R. Bruggemann, T. Unold, and G. Bauer, "Photoluminescence studies of a-Si: H/c-Si-heterojunction solar cells," Journal of non-crystalline solids, vol. 338, pp. 444-447, 2004. [97] S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, "Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD," Thin Solid Films, vol. 516, pp. 747-750, 2008. [98] W. Sievert, K. Zimmermann, B. Hartmann, C. Klimm, K. Jacob, and H. Angermann, "Surface texturization and interface passivation of mono-crystalline silicon substrates by wet chemical treatments," Solid State Phenomena, vol. 145, pp. 223-226, 2009. [99] J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si," Materials Research Bulletin, vol. 3, pp. 37-46, 1968. [100] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano, "High-efficiency a-Si/c-Si heterojunction solar cell," in 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, pp. 1219-1226. [101] Q. Wang, M. Page, Y. Xu, E. Iwaniczko, E. Williams, and T. Wang, "Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells," Thin Solid Films, vol. 430, pp. 208-211, 2003. [102] Q. Zhang, M. Zhu, F. Liu, and J. Liu, "Properties of n-type uc-Si: H films by Cat-CVD for c-Si heterojunction solar cells," Thin Solid Films, vol. 501, pp. 141-143, 2006. [103] J. Sritharathikhun, F. Jiang, S. Miyajima, A. Yamada, and M. Konagai, "Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells," Japanese Journal of Applied Physics, vol. 48, p. 101603, 2009. [104] Q. Wang, "High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells," Philosophical Magazine, vol. 89, pp. 2587-2598, 2009. [105] M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, and R. i Cabarrocas, "Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study," Journal of Applied Physics, vol. 107, pp. 054521-054521-14, 2010. [106] Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, "Properties and structure of a SiC:H for high efficiency a Si solar cell," Journal of Applied Physics, vol. 53, pp. 5273-5281, 1982. [107] M. Park, C. Teng, V. Sakhrani, M. McLaurin, R. Kolbas, R. Sanwald, R. Nemanich, J. Hren, and J. Cuomo, "Optical characterization of wide band gap amorphous semiconductors (a-Si:C:H): Effect of hydrogen dilution," Journal of Applied Physics, vol. 89, pp. 1130-1137, 2001. [108] C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, "Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 96, pp. 3987-3997, 2004. [109] M. Yu, S. Yoon, Z. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui, "Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method," Journal of Applied Physics, vol. 87, pp. 8155-8158, 2000. [110] S. Klein, L. Houben, R. Carius, F. Finger, and W. Fischer, "Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD," Journal of Non-Crystalline Solids, vol. 352, pp. 1376-1379, 2006. [111] Y. Huang, A. Dasgupta, A. Gordijn, F. Finger, and R. Carius, "Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in nip microcrystalline silicon solar cells," Applied Physics Letters, vol. 90, p. 203502, 2007. [112] T. Chen, Y. Huang, H. Wang, D. Yang, A. Dasgupta, R. Carius, and F. Finger, "Microcrystalline silicon carbide thin films grown by HWCVD at different filament temperatures and their application in nip microcrystalline silicon solar cells," Thin Solid Films, vol. 517, pp. 3513-3515, 2009. [113] F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, and S. Klein, "Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells," Thin Solid Films, vol. 517, pp. 3507-3512, 2009. [114] A. Heya, A. Masuda, and H. Matsumura, "Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten," Applied Physics Letters, vol. 74, pp. 2143-2145, 1999. [115] A. Brockhoff, W. van der Weg, and F. Habraken, "The effects of hot-wire atomic hydrogen on amorphous silicon," Journal of Applied Physics, vol. 89, p. 2993, 2001. [116] A. Brockhoff, W. van der Weg, and F. Habraken, "Hot-wire produced atomic hydrogen: effects during and after amorphous-silicon deposition," Thin Solid Films, vol. 395, pp. 87-91, 2001.
摘要: 熱燈絲化學氣相沉積法是一種近年來備受矚目的製程技術,可應用於多種元件級矽或矽合金薄膜的製作上。它是一種運用加熱的燈絲對反應氣體進行解離,以達到沉積效果的技術。相較於普及的電漿輔助化學氣相沉積,熱燈絲化學氣相沉積法具有低製程溫度、高沉積速率、低設備成本、大面積成長、高氣體使用率、無電漿轟擊以及易於控制薄膜結晶率等優點,是一種極具發展潛力的半導體製程技術。本論文主要之目的可分為兩部分,第一部分為開發並優化以熱燈絲化學氣相沉積法製作元件級矽薄膜之製程,第二部分則是將此以熱燈絲化學氣相沉積法製作之元件級矽薄膜應用於製作太陽電池上。製程開發所研究的材料包括本質矽薄膜(含非晶、微晶與多晶)、摻雜矽薄膜(含n型與p型)以及p型碳化矽,探討的製程參數則包含燈絲溫度、基板溫度、腔體壓力與反應氣體比例等。為探討製程參數與成膜品質之關聯,所成長矽膜之微結構與光電特性都被分析與探討,以求優化製程參數。 在本研究中,吾人成功開發以熱燈絲化學氣相沉積法製作元件級本質非晶矽膜,該膜能隙為1.6至1.7 eV、暗電導為2.3×10-11 Ω-1cm-1、光電導為6.1×10-4 Ω-1cm-1。透過氫氣比例調變,吾人亦成功以0.8 nm/s的沉積速率製作出元件級之多晶矽薄膜,以拉曼光譜與穿透式電子顯微鏡鑑定,該膜於厚度1 um時的結晶指數達93 %、晶粒尺寸大於150 nm、優選方向為(220)、能隙為1.1 eV、暗電導為8.2×10-8 Ω-1cm-1、光電導為1.1×10-5 Ω-1cm-1。透過摻雜氣體B2H6與PH3添加,也成功以熱燈絲化學氣相沉積法製作元件級之p型與n型矽薄膜。該n型矽膜的暗電導為0.292 Ω-1cm-1、活化能為0.036 eV且能隙為1.95 eV;該p型矽膜的暗電導為0.15 Ω-1cm-1、活化能0.05 eV且能隙為2.18 eV。於元件級碳化矽薄膜之開發,研究重點聚焦於通入之氫氣比例對膜質之影響。隨著氫氣比例上升,沉積率下降但結晶率上升,其結晶的優選方向為(111)、(220)與(311),修正製程參數後,將可得到具有摻雜濃度為1.03 × 1020 cm-3、活化能為0.14 eV 且暗電導為3.44 × 10-2 Ω-1cm-1特性之元件級p型碳化矽薄膜。 經過製程優化後,我們將以上熱燈絲化學氣相沉積法製作之元件級矽膜實際應用於太陽電池之製作與驗證上。採用之元件為單面矽異質接面太陽電池,結構為:上電極/摻雜矽膜射極/本質矽緩衝層/單晶矽吸收層/下電極。此種元件透過鍍膜於單晶矽晶片上以形成pn接面,本質緩衝層可用於改善接面特性,由於此元件有高效率與低成本的優勢,近年受到高度矚目。我們研究的元件結構包含:(1) n型微晶矽成長於p型晶片上;(2)雷射退火之 n型多晶矽成長於p型晶片上;(3)雷射擴散圖形化之n型選擇性電極成長於p型晶片上;以及(4) p型碳化矽成長於n型晶片上。 對於n型微晶矽成長於p型晶片結構之矽異質太陽電池,透過調變摻雜氣體(PH3)的比例,吾人得優化n型射極層之特性,藉此實現轉換效率為13.35 %的矽異質接面太陽電池。為進一步提升射極之膜特性,雷射再結晶技術被用於改善n型微晶矽薄膜之晶界缺陷,其改善之成果可透過拉曼光譜與穿透式電子顯微鏡驗證。最佳雷射之功率後,n型微晶矽成長於p型晶片結構之矽異質太陽電池效率可提升至14.2 %。再者,雷射擴散技術也被用於改善射極與上電極銦錫氧化物之接觸特性,透過功率優化與擴散圖形設計,n型微晶矽成長於p型晶片結構之矽異質太陽電池效率可再提升至14.31 %。而針對p型微晶碳化矽成長於n型晶片之矽異質太陽電池,透過調變製程之氫氣比例,可以改善p型微晶碳化矽光穿層的特性,經過一系列測試後,當氫氣流量為75 %時可以得到最佳轉換效率14.5 %。以上結果證實了以熱燈絲化學氣相沉積法製作之元件級矽膜應用於太陽電池製作之可行性,此結果對於日後開發熱燈絲化學氣相沉積法於太陽電池量產技術上是十分重要的指標。
Hot-wire chemical vapor deposition (HWCVD) is a promising technique for depositing device-quality thin amorphous, polycrystalline, and epitaxial silicon films at lower temperatures and higher deposition rates. With this technique, deposition species are generated by decomposition reaction of the source gases on the heated filament. Comparing with conventional plasma-enhanced CVD, main advantages of HWCVD are as follows: (1) low deposition temperature, (2) high deposition rate, (3) low equipment cost, (4) large area deposition, (5) high gas utilization, (6) absence of ion bombardment and easy control of the film crystallinity by varying composition of the gas. The primary aim of this dissertation can be divided into two parts: (1) to develop techniques of device-quality silicon films using HWCVD, and (2) to advance applications using silicon films deposited by HWCVD for silicon-base solar cells. A variety of materials, including intrinsic silicon (amorphous, microcrystalline, and polycrystalline), doped silicon (p-type and n-type), and p-type silicon carbide (SiC), was studied to make the films with device-quality. Role of the deposition parameters, mainly including filament temperature, substrate temperature, deposition pressure and gas dilution ratio, were considered to characterize the deposited films. Although the structural, electrical and optical properties can be individually analyzed by means of different characterization techniques, a clear correlation among them was observed. Finally, we produced device-quality intrinsic amorphous silicon films (energy gap (Eg) = 1.6-1.7 eV, dark-conductivity = 2.3×10-11 Ω-1cm-1, and photoconductivity = 6.1×10-4 Ω-1cm-1), poly-Si films (crystalline fraction > 93 %, grain size > 165 nm, Eg = 1.1 eV, dark-conductivity = 8.2×10-8 Ω-1cm-1 and photoconductivity = 1.1×10-5 Ω-1cm-1), n-type microcrystalline silicon (uc-Si) films (dark-conductivity = 0.292 Ω-1cm-1, activation energy (Ea) = 0.036 eV and Eg = 1.95 eV), p-type uc-Si films (dark-conductivity = 0.15 Ω-1cm-1, Ea = 0.05 eV and Eg = 2.18 eV) and p-type SiC films (carrier concentration = 1.03 × 1020 cm-3, Ea = 0.14 eV and dark-conductivity = 3.44 × 10-2 Ω-1cm-1). As the result shown above, those HWCVD deposited silicon films were confirmed to be using for solar cell applications. In this dissertation, a single-sided silicon heterojunction solar cell was fabricated and characterized with the structure of front contact/doped silicon thin emitter/intrinsic silicon thin buffer/mono-crystalline silicon absorber/rear contact. A doped silicon emitter layer is combined with a thin intrinsic amorphous silicon buffer upon a different type mono-crystalline silicon absorber to form the pn-junction cell. Such heterojunction cells had attracted much attention because of their high efficiency and low-cost fabrication process. The cell structure comprises an n-type uc-Si emitter on p-type wafer, laser-annealed n-type poly-Si emitter on p-type wafer, laser-doping patterned n-type uc-Si selective-emitter on p-type wafer, and finally a p-type uc-SiC emitter on n-type wafer. After optimizing the dopant dilution (PH3) for the n-type emitter deposition, a conversion efficiency of 13.35% was achieved for the silicon heterojunction cells with an n-type uc-Si film on the p-type wafer. To improve the n-type emitter properties, a laser crystallization technique is used to reduce the grain boundary defects of HWCVD deposited micro-crystalline n-type films. It was found that the cell performance can be enhanced under an optimum laser power density, where the 14.2% conversion efficiency has been obtained. Furthermore, a laser doping technique was employed to improve the contact resistance between indium-tin oxide and n-type emitter via the formation of the selective emitter structure. By optimizing the laser power density and doping-pattern design, a cell with a selective-emitter structure can achieve an efficiency of 14.31%. For p-type uc-SiC emitter on n-type wafer, a HWCVD deposited p-type uc-SiC film is used as a window layer in n-type crystalline silicon heterojunction solar cells. The effect of hydrogen dilution during p-type silicon carbide deposition on the material properties and cell performance are investigated. The silicon heterojunction cell with an efficiency of 14.5% can be achieved under a hydrogen flow ratio of 75% in the preparation of p-uc-SiC film for. These are very encouraging results for future fabrication of high efficiency heterojunction solar cells by using HWCVD technique.
URI: http://hdl.handle.net/11455/10218
其他識別: U0005-1908201110373200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201110373200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.