Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10222
DC FieldValueLanguage
dc.contributor吳文偉zh_TW
dc.contributor李勝偉zh_TW
dc.contributor.advisor許薰丰zh_TW
dc.contributor.author黃育廷zh_TW
dc.contributor.authorHuang, Yu-Tingen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:44:33Z-
dc.date.available2014-06-06T06:44:33Z-
dc.identifierU0005-1907200610083800zh_TW
dc.identifier.citation[1] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H.Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 8 (1992) 3183. [2] N. Li and M. Zinke-Allmang, “Size-tunable Ge nano-particle arrays patterned on Si substrates”, Jpn. J. Appl. Phys. 41 (2002) 4626. [3] S.L. Cheng , S.W. Lu, C.H. Li, Y.C. Chang, C.K. Huang, H. Chen, “Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography”, Thin Solid Films 494 (2006) 307. [4] S.L. Cheng, S.W. Lu, S.L. Wong, C.C. Chang, H. Chen, “Fabrication of 2D ordered arrays of cobalt silicide nanodots on (001)Si substrates”, J. Cryst. Growth 300 (2007) 473. [5] W. Liu, W. Zhong, L.J. Qiu, L.Y. Lu, Y.W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array”, Eur. Phys. J. B 51 (2006) 501. [6] S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, P. Petricola, G. Moccia, R. Alfonsetti, R. Diamanti, “Studies on structural, electrical, compositional, and mechanical properties of WSix thin films produced by low-pressure chemical vapor deposition”, J. Vac. Sci. Technol. A 16 (1998) 1207. [7] J. Amano, P. Merchant, T.R. Cass, J.N. Miller, T. Koch, “Dopant redistribution during titanium silicide formation”, J. Appl. Phys. 59 (1986) 2689. [8] K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus,M. Richter, G. Ulm, “PtSi-n -Si Schottky-barrier photodetectors with stable spectral responsivity in the 120-250 nm spectral range”, Appl. Phys. Lett. 69 (1996) 3662. [9] S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinos, J. I. Lee, “Investigation of noise sources in platinum silicide Schottky barrier diodes”, Appl. Phys. Lett. 80 (2002) 1468. [10] P. Giordano, J.P. Gonchond, J.C. Oberlin, P. Normandon, R. Basset, A. Chantre, “Leakage mechanism for tungsten/chromium metalized silicon p/n junctions”, Appl. Phys. Lett. 54 (1989) 2429. [11] V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, V. V. Nemoshkalenko, “Theory and experiment on the optical properties of CrSi2”, Phys. Rev. B 46 (1992) 9380. [12] M. Rebien, W. Henrion, H. Angermann, S. Teichert, “Ab initio study of the band structures of different phases of higher manganese silicides”, Appl. Phys. Lett. 81 (2002) 649. [13] L. Wang, L. Qin, Y. Zheng, W. Shen, X. Chen, X. Lin, C. Lin, S. Zou, “Optical transition properties of β-FeSi2 film”, Appl. Phys. Lett. 65 (1994) 3105. [14] C. Fu, M. P. C. M. Krijn, S. Doniach, “Electronic structure and optical properties of FeSi, a strongly correlated insulator”, Phys. Rev. B 49 (1994) 2219. [15] G. Molnar , L. Dozsa, G. Peto, Z. Vertesy, A.A. Koos, Z.E. Horvath, E. Zsoldos, “Thickness dependent aggregation of Fe-silicide islands on Si substrate”, Thin Solid Films 459 (2004) 48. [16] H. T. Lu, L. J. Chen, Y. L. Chueh, L. J. Chou, “Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si”, J. Appl. Phys. 93 (2003) 1468. [17] T. Yoshitake, M. Yatabe, M. Itakura, N. Kuwano, Y. Tomokiyo, “Semiconducting nanocrystalline iron disilicide thin films prepared by pulsed-laser ablation”, Appl. Phys. Lett. 83 (2003) 3057. [18] B. Schuller, R. Carius, S. mantl, “Optical and structural properties of β-FeSi2 precipitate layers in silicon”, J. Appl. Phys. 94 (2003) 207. [19] K. Yamaguchi, K. Shimura, H. Udono, M. Sasase, H. Yamamoto, S. Shamoto, K. Hojou, “Effect of thermal annealing on the photoluminescence of β-FeSi2 films on Si substrate”, Thin Solid Films 508 (2006) 367. [20] K. Yamaguchi, M. Haraguchi, T. Katsumata, K. Shimura, H. Yamamoto, K. Hojou, “Effect of substrate temperature and deposited thickness on the formation of iron silicide prepared by ion beam sputter deposition”, Thin Solid Films 461 (2004) 13. [21] M. Sasase, K. Shimura, K. Yamaguchi, H. Yamamoto, S. Shamoto, K. Hojou, “Sputter etching effect of the substrate on the microstructure of β-FeSi2 thin film prepared by ion beam sputter deposition method”, Instr. and Meth. in Phys. Res. B 257 (2007) 186. [22] M. Tode, Y. Takigawa, M. Muroya, M. Katto, K. Kurosawa, M. Ohmukai, “Growth of β-FeSi2 thin films on silicon substrates by pulsed laser deposition using α-FeSi alloy targets”, Jpn. J. Appl. Phys. 46 (2007) 651. [23] B. Tatar, K. Kutlu, M. Ürgen, “Surface characterization of β-FeSi2/Si heterojunctions prepared by magnetron sputtering”, Surface & Coatings Technology 201 (2007) 8373. [24] M. Yasui, T. Aoki, A. Suzuki, T. Matsushita, M. Okuda, “Fabrication and characterization of β-FeSi2 thin films prepared by PLD method using Nd:YAG laser”, Electrical Engineering in Japan 160 (2007) 39. [25] M. E. Schlesinger, “Thermodynamics of solid transition-metal silicides”, Chem. Rev. 90 (1990) 607. [26] V. Darakchieva, M. Baleva, M. Surtchev, E. Goranova, “Structural and optical analysis of β-FeSi2 thin layers prepared by ion-beam synthesis and solid-state reaction”, Phys. Rev. B 62 (2000) 057. [27] K. Lefki, P. Muret, N. Cherief, R.C. Cinti, “Optical and electrical characterization of β-FeSi, epitaxial thin films on silicon substrates”, J. Appl. Phys. 69 (1991) 352. [28] M. Rebien, W. Henrion, U. Muller, S. Gramlich, “Exciton absorption in β-FeSi2 epitaxial films”, Appl. Phys. Lett. 74 (1999) 970. [29] E. Arushanov, E. Bucher, C. Kloc, O. Kulikova, L. Kulyuk, A.Siminel, “Photoconductivity in n-type β-FeSi2 single crystals”, Phys. Rev. B 52 (1995) 20. [30] A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin,G.V. Petrov, V.E. Borisenko, W. Henrion, H. Lange, “Electronic and related properties of crystalline semiconducting iron disilicide”, J. Appl. Phys. 79 (1996) 7708. [31] C. Giannini, S. Lagomarsino, F. Scarinci, P. Castrucci, “Nature of the band gap of polycrystalline β-FeSi2 films”, Phys. Rev. B 45 (1992) 8822. [32] A.G. Birdwell, R. Glosser, D.N. Leong, K.P. Homewood, “Raman investigation of ion beam synthesized β-FeSi2”, J.Appl. Phys. 89 (2001) 965. [33] H.C. Chen, K.F. Liao, S.W. Lee, S.L. Cheng, L.J. Chen, “Formation of epitaxial β-FeSi2 nanodots array on strained Si/Si0.8Ge0.2 (001) substrate”, Thin Solid Films 461 (2004) 44. [34] N.E. Christensen, “Electronic structure of β-FeSi2”, Phys. Rev. B 42 (1990) 7148. [35] M.G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli, D.B. Migas, L. Miglio, “Luminescence from β-FeSi2 precipitates in Si. II: Origin and nature of the photoluminescence”, Phys. Rev. B 66 (2002) 085319. [36] S.J. Clark, H.M. Al-Allak, S. Brand, R.A. Abram, “Structure and electronic properties of β-FeSi2”, Phys. Rev. B 58 (1998) 10389. [37] T. Suemasu, T. Fujii, K. Takakura, F. Hasegawa, “Dependence of photoluminescence from β-FeSi2 and induced deep levels in Si on the size of β-FeSi2 balls embedded in Si crystals”, Thin Solid Films, 381 (2001) 209. [38] M. M. Demir, R. M. Espi, I. Lieberwirth, G. Wegner, “Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate”, J. Mater. Chem. 16 (2006) 2940. [39] R. Ayachea, A. Bouabelloub, E. RichterOptical, “characterization of b-FeSi2 layers formed by ion beam synthesis”, Materials Science in Semiconductor Processing, 7 (2004) 463. [40] Z. Liu, M. Osamura, T. Ootsuka, R. Kuroda, Y. Makita, H. Tanoue, Y. Fukuzawa, N. Otogawa, Y. Nakayama, “Formation of β-FeSi2 thin films on non-silicon substrates”, Thin Solid Films 515 (2006) 1532.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10222-
dc.description.abstract具有半導體性質的鐵矽化物(β-FeSi2)在近十年獲得了很大的注意,因為有研究顯示,它具有0.8 eV的直接能隙,可以發出波長約1.54 μm的光,可應用於合成矽基材料的紅外線發光元件(IR-Light emitting device, IR-LED)或紅外線感測器(IR Sensor)。 本研究利用反應式磊晶法在矽基材上生長奈米尺寸的鐵矽化物,並探討不同結構的鐵矽化物對其光學性質的影響。研究結果顯示,於基材溫度400℃時為β-FeSi2及γ-FeSi2共存,基材溫度500、600、700℃時為β-FeSi2、γ-FeSi2及α-FeSi2共存,PL的量測中在波長為1614 nm及1655 nm處有波峰出現。 此外,利用奈米球微影技術,在矽基材上製備二維規則排列之圖案化氮化矽模板,藉由此模板成長鐵矽化物奈米點陣列,並探討不同結構的鐵矽化物奈米點陣列對其光學性質的影響。研究結果顯示,於基材溫度500、600℃時為β-FeSi2,基材溫度700℃時為α-FeSi2,PL的量測中在波長為1615 nm及1654 nm處有波峰出現,峰值的半高寬相較於先前所提之文獻所量測出的值小,表示利用此種製程方法所生成之β-FeSi2的奈米結構,推測由於尺寸效應可以得到較佳之光學性質。zh_TW
dc.description.abstractSemiconducting β-FeSi2 has attracted great attention in the recent decade because it has a direct band-gap of about 0.8 eV, and it can emit a light of 1.54 μm. With this property, silicon based IR-LED (Light emitting device) and IR-Sensor can be synthesized. In this study, the iron silicide nanostructures were formed on the silicon substrate by the reactive deposition epitaxy, and their optical properties were studied. The results show as follows. β-FeSi2 and γ-FeSi2, grown on Si substrates by the RDE at 400 ℃, were observed. At 500, 600 and 700 ℃, β-FeSi2, γ-Fesi2 and α-FeSi2 were formed. The PL spectra can be considered to consist of both intrinsic emission of β-FeSi2 nanoparticles at 1614 nm and extrinsic ones due to radiative surface on β-FeSi2 nanoparticles at 1655 nm. In addition, the iron silicide nanodot arrays were fabricated by using silicon nitride template with 2-D opening arrays in nanoscale. The effects of iron silicide structure of nanodot arrays on the optical properties were studied. The results show as follows. β-FeSi2 was formed in the openings of silicon nitride template by the RDE at 500 and 600 ℃. At 700 ℃, β-FeSi2 transformed to α-FeSi2. From PL analysis, the intrinsic and extrinsic emission of β-FeSi2 can also be observed when the samples were prepared by the deposition at 500 and 600 ℃. Small FWHM of PL peaks were obtained due to the size effect of β-FeSi2 nanoparticles.en_US
dc.description.tableofcontents誌謝 I 摘要 II ABSTRACT III 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 4 2-1 奈米球微影術 4 2-1-1 奈米球自組裝微影術 4 2-1-2 奈米球自組裝陣列形成機制 5 2-1-3 奈米球點陣列 7 2-1-4 金屬奈米點陣列 8 2-2 常見奈米球排列製作技術 8 2-2-1 自然滴製法 8 2-2-2 旋轉塗佈法 9 2-3 鐵矽化物 9 2-3-1 金屬矽化物的發展 9 2-3-2 鐵矽化物的發展 10 2-3-3 塊材β-FeSi2和薄膜及析出物β-FeSi2之不同的發光行為 11 2-4 研究動機與目的 12 第三章 實驗步驟 13 3-1 基材準備與清洗 13 3-1-1 成長鐵矽化物之基材準備與清洗 13 3-1-2 成長鐵矽化物奈米點陣列之基材準備與試片清洗 14 3-2 奈米球自組裝裝置準備 14 3-3 奈米球膠體溶液配置 15 3-3 自組裝奈米球陣列 16 3-4 離子蝕刻Ⅰ 16 3-5 奈米球舉離 16 3-6 離子蝕刻Ⅱ 17 3-7 鐵金屬薄膜蒸鍍 17 3-7-1 鍍膜參數 17 3-8 實驗與分析儀器 18 3-8-1 原子力顯微鏡(Atomic Force Microscope, AFM) 18 3-8-2 場發射掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 18 3-8-3 分析式穿透式電子顯微鏡(Analytical Transmission Electron Microscope, AEM) 18 3-8-4穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 19 3-8-5 光激螢光光譜量測系統(Photoluminescence, PL) 19 第四章 結果與討論 20 4-1 反應式磊晶成長鐵矽化物奈米結構 20 4-1-1 鐵矽化物之結構分析 20 4-1-2 鐵矽化物之光學性質 22 4-2 利用奈米球微影成長鐵矽化物奈米點陣列 24 4-2-1 二維規則排列之圖案化氮化矽模板 24 4-2-1-1 奈米球排列之影響因素 24 4-2-1-2 離子蝕刻 25 4-2-1-3 二維規則排列之氮化矽窗口結構分析 27 4-2-2 二維規則排列之鐵矽化物奈米點陣列 27 4-2-2-1 鐵矽化物奈米點陣列之結構分析 27 4-2-2-2 鐵矽化物奈米點陣列之光學性質 29 第五章 結論 31 參考文獻 71zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907200610083800en_US
dc.subjectiron silicideen_US
dc.subject鐵矽化物zh_TW
dc.subjectnanostructuresen_US
dc.subjectoptical propertiesen_US
dc.subject奈米結構zh_TW
dc.subject光學性質zh_TW
dc.title製備鐵矽化物奈米結構及其光學性質之研究zh_TW
dc.titleFabrication and optical properties of iron silicide nanostructuresen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.