Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10243
標題: Fabrication and characterization of p-type silicon films using hot-wire chemical vapor deposition for heterojunction solar cell applications
熱燈絲化學氣相沉積法製作P型矽薄膜之特性研究與其在矽異質接面太陽能電池之應用
作者: 謝昕佑
Hsieh, Hsin-Yu
關鍵字: SHJPV
矽異質接面太陽電池
HWCVD
H2 flow ratio
wafer specification
熱燈絲化學氣相沉積法
氫流量比
晶片規格
出版社: 材料科學與工程學系所
引用: [1] 莊嘉琛,"太陽能工程-太陽電池篇",全華科技圖書出版 (2003)。 [2] 楊素華、蔡泰成,科學發展, 390期,2005年6月。 [3] J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham and M. A. Green, “24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research”, Sol. Energy Mater. Sol. Cells, vol. 41-40, pp. 88-89, 1996. [4] M. B. Prince, “Silicon solar energy converters”, J. Appl. Phys., vol.26, pp. 534-540, 1955. [5] L. Kazmerski, D. Gwinnwe, and A. Hicks, “National renewable energy laboratory”, 2007. [6] J. Zhao, “Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials”, Sol. Energy Mater. Sol. Cells, vol. 82, pp. 53-64, 2004. [7] H. Matsumura, H. Umemoto and A. Masuda, “Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon”, J. Non-Cryst. Solids, vol. 338, pp. 19-26, 2004. [8] K. Ishibashi, M. Karasawa, G. Xu, N. Yokokawa, M. Ikemoto, A. Masuda and H. Matsumura, “Development of Cat-CVD apparatus for 1-m-size large-area deposition”, Thin Solid Films, vol. 430, pp. 58-62, 2003. [9] 戴寶通、鄭晃忠,"太陽能電池技術手冊",台灣電子材料與元件協會出版。 [10] 黃惠良、曾百亨,"太陽電池 Solar Cells",五南出版社。 [11] D. A. Neamen, “Semiconductor physics and devices”, The McGraw Hill Companies, 1992. [12] S. O. Kasap, “Optoelectronics and photonics principles and particles”, Pearson Prentice Hall Companies.2001. [13] 羅吉宗,"薄膜科技與應用(修訂版)",全華科技圖書出版。 [14] B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-deposition rate a-Si:H n–i–p solar cells grown by HWCVD”, Thin Solid Films, vol.395, pp. 292-297, 2001. [15] H. Wiesmann, A. K. Ghosh, T. McMahon and M. Strongin, “a-Si:H produced by high-temperature thermal decomposition of silane”, J. Appl. Phys., vol. 50, pp. 3752-3754, 1979. [16] H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2”, J. Appl. Phys., vol. 47, pp. 833-835, 1985. [17] A. H. Mahan, J. Carapella, B. P. Nelson, and R.S. Crandall, “Deposition of device quality, low H content amorphous silicon”, J. Appl. Phys., vol. 69, pp. 6728-6730, 1991. [18] H. Matsumura, “Formation of Polysilicon films by catalytic chemical vapor deposition (Cat-CVD) method”, Jpn. J. Appl. Phys., vol. 30, pp. 1522-1524, 1991. [19] H. Matsumura, “Silicon nitride produced by catalytic chemical vapor deposition method,” J. Appl. Phys., vol. 66, pp. 3612-3617, 1989. [20] R. E. I. Schropp and M. Zeman, “Amorphous and microcrystalline silicon solar cell: modeling materials and device technology”, Kluwer Academic Publishers. [21] 陳力俊,"材料電子顯微鏡學",全華科技圖書出版。 [22] S. K. Chong, B. T. Goh, Z. Aspanut, M. R. Muhamad, C. F. Dee and S. A. Rahman, “Effect of substrate temperature on gold-catalyzed silicon nanostructures growth by hot-wire chemical vapor deposition(HWCVD)”, App. Surf. Sci., vol. 257, pp. 3320-3324, 2011. [23] U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz and B. Schröder, ”a-Si:H based solar cells entirely deposited by Hot-Wire CVD”, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, pp. 286-289, 2000. [24] K. Inoue, S. Tange, K. Tonokure and M. Koshi, “Anti-heat shock protein-27 (Hsp-27) antibody levels in patients with chest pain: Association with established cardiovascular risk factors”, Thin Solid Films, vol. 395, pp. 42-46, 2001. [25] M. Koshi, F. Tamura and H. Matsui, “Rate constants for the reactions of hydrogen atoms with SiHnF4 - n (n = 4, 3, 2)”, Chem. Phys. Lett. vol. 173, pp. 235-240, 1990. [26] H. Matsumura, “Silicon nitride produced by catalytic chemical vapor deposition method”, J. Appl. Phys., vol. 66, pp. 3612-3617, 1989. [27] A. Gallagher, “Some physics and chemistry of hot-wire deposition”, Thin Solid Films, vol. 395, pp. 25-28, 2001. [28] E. C. Molenbroek, “Deposition of hydrogenated amorphous silicon with the hot wire technique”, Ph. D. Thesis, University of Colorado,1995. [29] J. Zhao, A. Wang, P. P. Altermatt and M. A. Green, “High efficiency PERT cells on n-type silicon substrates”, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, pp. 218-221, 2002. [30] J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in Cz-grown silicon”, Proceedings of the 26th IEEE Photovoltaic Specialist Conference, Anaheim, pp. 13-18, 1997. [31] 蕭睿中、陳建勳、林景熙、徐偉智、葉芳耀,工業雜誌,281期,2100年,5月。 [32] T. Yagi, Y. Uraoka and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2647-2656, 2006. [33] T. Oshima, A. Yamada and M. Konagai, “Analysis of H2-dilution effects on photochemical vapor deposition of Si thin films”, Jpn. J. Appl. Phys. , vol. 36, pp. 6481-6487, 1997. [34] A. Tabata and M. Mori, “Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates”, Thin Solid Films, vol. 516, pp. 626-629, 2008. [35] K. Tao, D. Zhang, J. Zhao, L. Wang, H. Cai and Y. Sun, “Low temperature deposition of boron-doped microcrystalline Si:H thin film and its application in silicon based thin film solar cells”, J. Non-Cryst. Solids, vol. 356, pp. 299-303, 2009. [36] J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li and H. Shirai, “Study on the initial growth process of crystalline silicon films on aluminum-coated polyethylene napthalate by Raman spectroscopy”, J. Non-Cryst. Solids, vol. 308, pp. 330-333, 2007. [37] R. Saleh and N. H. Nickel, “Raman spectroscopy of B-doped microcrystalline silicon films”, Thin Solid Films, vol. 427, pp. 266-269, 2003. [38] M. Ledinský, A. Vetushka, J. Stuchlík, T. Mates, A. Fejfar, J. Kočka and J. Štěpánek, “Crystallinity of the mixed phase silicon thin films by Raman spectroscopy”, J. Non-Cryst. Solids, vol. 354, pp. 2253-2257, 2007. [39] Z. Iqbal, S. Veprek, A.P. Webb and P. Capezzuto, “Raman scattering from small particle size polycrystalline silicon”, Solid State Commun., vol. 37, pp. 993-996, 1981. [40] U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, “Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution”, J. Appl. Phys, vol. 80, pp. 4971-4975, 1996. [41] H. Wagner, R. Butz, U. Backes and D. Bruchmann, “Hydrogen vibrations on Si (111)”, Solid State Commun., vol. 38, pp. 1155-1157, 1981. [42] D. Predoia, R. Cléracb, A. Jitianuc, M. Zaharescuc, M. Crisanc and M. Raileanuc, “Study of fexoy-SiO2 nanoparticles obtained by sol-gel synthesis”, Digest Journal of Nanomaterials and Biostructures, vol. 01, pp. 93-97, 2006. [43] J. P. Condea, P. Brogueirab and V. Chuc, “Amorphous and microcrystalline silicon films obtained by hot-wire chemical vapor deposition using high filament temperatures between 1900 and 2500°C ”, Philosophical Magazine Part B, vol. 76, pp. 299-308, 1997. [44] S. Furukawaand T. Miyasato, “Quantum size effects on the optical and electrical properties of microcrystalline Si:H”, Superlattices Microstruct., vol. 5, pp. 317-320, 1989. [45] S. R. Jadkar, J. V. Sali, S. T. Kshrisagar and M. G. Takwale, “Deposition of hydrogenated amorphous silicon (a-Si:H) films by hot wire chemical vapor deposition: role of filament temperature”, Thin Solid Films, vol. 437, pp. 18-24, 2003. [46] J. C. Noya, C. P. Herrero, and R. Ramírez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B, vol. 56, pp. 15139-15150, 1997. [47] H. Chen, M. H. Gullanar and W. Z. Shen, “Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films”, J. Cryst. Growth, vol. 260, pp. 91-101, 2003. [48] K. Shimakawa, “Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach”, J. Non-Cryst. Solids, vol. 266-269, pp. 223-226, 2000. [49] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, vol. 337, pp. 1-6, 1999. [50] S. R. Jadkara, J. V. Salia, M. G. Takwale, D. V. Musaleb and S. T. Kshirsagarb, “Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (μc-Si:H) by a hot-wire chemical vapor deposition (HWCVD) technique”, Sol. Energy Mater. Sol. , vol. 64, pp. 333-346, 2000. [51] J. C. Lee, K. H. Kang, S. K. Kim, K. H. Yoon, J. Song, S. W. Kwon, K. S. Lim, and I. J. Park, “Deposition of device quality μc-Si:H films by hot-wire CVD for solar cell applications”, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, pp. 1258-1261, 2002. [52] J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure”, Sol. Energy Mater. Sol., vol. 53, pp. 189-203, 1998. [53] C. Mukherjee, U. Weber, H. Seitz and B. Schröder, “Growth of device quality p-type μc-Si:H films by hot-wire CVD for a-Si pin and c-Si heterojunction solar cells”, Thin Solid Films, vol. 395, pp. 310-314, 2001. [54] S. Mingji, W. Zhanguo, L. Shiyong, P. Wenbo, X. Haibo, Z. Changsha and Z. Xiangbo, “Boron-doped silicon film as a recombination layer in the tunnel junction of a tandem solar cell”, J. Semi., vol. 30, No. 6, 2009. [55] H. L. Hsiao, Y. Y. Shieh, R. S. Lee, R. Y. Wang, K. C. Wang, H. L. Hwang and A. B. Yang, “Electrical and structural properties of low temperature boron- and phosphorus-doped polycrystalline silicon thin films prepared by ECR-CVD”, Appl. Surf. Sci., vol. 142, pp. 400-406, 1999. [56] S. A. Filonovich, M. Ribeiro, A. G. Rolo and P. Alpuim, “Phosphorous and boron doping of nc-Si:H thin films deposited on plastic substrates at 150 °C by Hot-Wire Chemical Vapor Deposition”, Thin Solid Films, vol. 516, pp. 576-579, 2008. [57] J. V. Sali, V. D. Panaskar, M. G. Takwale, B. R. Marathe and V. G. Bhide, “Preparation of highly conductive p-type μc-Si:H window layer using lower concentration of hydrogen in the rf glow discharge plasma”, Sol. Energy Mater. Sol., vol. 45, pp. 413-421, 1997. [58] K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan and R. M. Swanson, “The choice of silicon wafer for the production of low-cost rear-contact solar cells”, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, vol. 1, pp. 971-974, 2003. [59] M. Hilali, A. Ebong, A. Rohatgi and D. L. Meier, “Resistivity dependence of minority carrier lifetime and cell performance in p-type dendritic web silicon ribbon”, Solid-State Electron., vol. 45, pp. 1973-1978, 2001. [60] L. Zhao, H. L. Li, C. L. Zhou, H. W. Diao and W. J. Wang, “Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation”, Solar Energy, vol. 83, pp. 812-816, 2008.
摘要: The silicon heterojunction solar cell (SHJPV) has received much attention because of its high conversion efficiency that could be achieved using a simple structure and a low process temperature. In this thesis, the device-quality p-type microcrystalline silicon thin film (p-uc-Si) was fabricated by hot-wire chemical vapor deposition (HWCVD) technique and the effects of wafer specification on the SHJPV cell performance were also investigated. In order to optimize the film quality, the HWCVD p-uc-Si films were fabricated under various hydrogen flow ratios. The film properties were identified by X-ray diffractormeter, field emission scanning electron microscopy, transmission electron microscopy, Raman spectrometer, Fourier-transform infrared spectrometer, Hall measurement and n&k analyzer. The results indicated that the crystallinity of p-uc-Si films was improved with increasing the H2 flow ratio. The optical energy gap, however, decreased as the H2 flow ratio increased. Under an optimum hydrogen flow rate of 50 sccm, a device-quality p-uc-Si film with carrier mobility of 1.38 cm2/V-s and concentration of 1.8x1019 cm-3 was obtained. The SHJPV (Al/ITO/p-uc-Si/intrinsic a-Si/n-wafer/ITO/Ag/Al) with an efficiency of 12.55% can be obtained using the p-uc-Si film as a window layer. For the wafer verification, it was found that the thicker wafer (100 to 675 um) leads to a higher efficiency (11.64 to 12.29 %). The smaller bulk resistivity (140 to 2 ohm-cm) results in a higher efficiency (10.9 to 12.24 %). The longer bulk lifetime (37.5 to 169.5 us) promotes a higher cell efficiency (12.04 to 12.71 %). These indicate that the wafer properties play important roles in determining the cell performance. Finally, the SHJPV with an efficiency of 12.71 % was achieved. This is a very promising result for future high-efficiency and low-cost SHJPVs.
近年來隨著世界各地環保意識的高漲,使綠色能源的太陽能電池越來越被重視。而本研究也將焦點放在具有前瞻性的矽異質太陽能電池,主要是利用熱燈絲化學氣相沉積法,以加熱鎢絲裂解SiH4、B2H6和H2等製程氣體,並改變各項製程參數,優化p型矽薄膜 而要了解p型矽薄膜是否被優化之前,本研究利用分析結構的X光繞射分析儀、場發射掃描式電子顯微鏡、拉曼光譜儀、高解析度穿透式顯微鏡和傅立葉轉換紅外光譜儀,以及分析光電特性的n&k光學量測系統和霍爾效應量測。在這個研究發現,當氫流量比例增加時,p型矽薄膜的結晶度增加、光學能隙下降。在此研究中,發現當氫流量為50 sccm有最佳的載子遷移率1.38 cm2/V-s以及載子濃度1.8x1019 cm-3之p型矽薄膜。並以最佳化的p型矽薄膜製作成Al/ITO/p-uc-Si/intrinsic a-Si/n-wafer/ITO/Ag/Al 的結構,且製作出12.55 %的轉換效率太陽能電池元件 而研究結果發現,當晶片的厚度由675減少到100 um時,元件轉換效率由12.29下降到11.64 %;當晶片的阻值由2下降到140 ohm-cm時,元件轉換效率由12.24下降到10.9 %;當晶片載子生命期由37.5增加到169.5 us,元件之轉換效率由12.04提升到12.71 %。在此研究顯示,不只是p型矽薄膜對太陽能電池的轉換效率會有很大的影響,晶片的規格也會對太陽能電池的轉換效率有很大的影響。
URI: http://hdl.handle.net/11455/10243
其他識別: U0005-2008201115434700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201115434700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.