Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10247
標題: AISI 304不銹鋼在不同頻率下震動銲接之研究
The Study of AISI 304 stainless steel vibration welding under various frequencies
作者: 賴建宏
Lai, Chien-Hong
關鍵字: Residual stress
同步震動
Vibration welding
δ-ferrite
δ-肥粒鐵
共振頻
殘留應力
出版社: 材料科學與工程學系所
引用: 1. Welding Handbook, American Welding Society, Miami, ed. 8, Vol. 1, 1987. 2. W. K. C. Jones and P. J. Alberry, “Residual Stresses in Welded Construction and Their Effects,” London, pp. 15-26, 1977. 3. 陳宏志,銲接結構強度學,復文書局,民國84年。 4. C. P. Chou and Y. C. Lin, “Improvement of Residual Stress by Parallel Heat Welding in Small Specimens in Type 304 Stainless Steel,” Materials Science and Technology, Vol. 8, No. 2, pp. 179-183, 1992. 5. Y. C. Lin and C. P. Chou, “A Study of the Residual Stress Due to Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel,” Materials Science and Technology, Vol. 8, No. 9, pp. 837-840, 1992. 6. Y. C. Lin and C. P. Chou, “A New Technique for Reducing the Residual Stress Induced by Welding in Type 304 Stainless Steel,” Journal of Material Processing Technology, Vol. 48, pp. 693-698, 1995. 7. 周浩森,“銲接殘餘應力和變形”,銲接與切割,第二卷,第一期,第83-92頁, 民國81年。 8. K. Masubuchi, Analysis of Weld Structure, ed. 1, Pergamon Press, pp. 92-94, 1980. 9. 林義成,“減少銲件殘留應力之方法簡介”,機械技術,第48期,第48-58頁,民 國78年。 10. K. Masubuchi, Metal Handbook, ed. 9, ASM, Vol. 6, pp. 856-895. 11. E. Enke, “Stress Relieving by Vibration,” Maschinenmarkt, Vol. 48, No. 66, pp. 37-38, 1955. 12. A. G. Hebel, Jr., “Sub-resonant Vibrations Relief Residual Stress,” Metal Processs, Vol. 128, No.6, pp. 51-55, 1985. 13. C. A.Walker, A.J. Waddell and D. J. Johnston, “Vibratory Stress Relief – An Investigation of the Underlying Process,” Process Institution Mechanical Engineers, Vol. 209, pp. 51-58, 1995. 14. H. Buhler and H. Pfalzgraf, “Study of Residual Stress Relief in Iron and Steel by Means of Vibration and Long Term Aging in Air,” VDI-Forschungsheft 494, 1962. 15. H. Buhler and H. G. Pfaizgraf, “Discussion on the Reduction of Residual Stresses in Workpieces Made of Cast Iron,” Weristati and Betrieb, Vol. 171, No. 2, p. 3643, 1964. 16. H. Buhler and H. Pfalzgraf, “Studies of Weld Residual Stress Relieving by Vibration,” Schweissen und Schneiden, Vol. 16, pp. 178-183, 1964. 17. H. Buhler and H. G. Pfaizgraf, “Relief of Casting Stresses by Jotting Part 1,” Foundry Trade Journal, Vol. 118, pp. 567-569, 1965. 18. I. Kh. Lokshin, “Vibration Treatment and Dimensional Stabilization of Casting,” Russian Castings Production, pp. 454-456, 1965. 19. Meta-Lax, Meta-Lax Stress Relief Procedure, Bonal Technologies, Inc. 1997. 20. R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of It Is Effectiveness,” Journal of Engineering Materials and Technology, Vol.102, pp.169-176, 1980. 21. G. Gnirss, “Vibration and Stress Relief - Historical Development Theory and Practical Application,” Indian Welding Journal, Vol. 22, No. 1, p. 11, 1990. 22. E. Klotzbucher and H. Kraft, “Residual Stresses in Science and Technology, “ (DGM Metallurgy Information, USA), p. 959, 1987. 23. M. C. Sun, “The Vibratory Stress Relief of A Marine Shafting of 35# Bar Steel,” Materials Letters, Vol. 58, pp. 299-303, 2004. 24. S. Aoki, T. Nishimura and T. Hiroi, “Reduction method for residual stress of welded joint using random vibration,” Nuclear Engineering and Design, Vol. 235, pp. 1441-1445, 2005. 25. D. Rao, D. Wang, L. Chen and C. Ni, “The Effectiveness Evaluation of 304L Stainless Steel Vibratory Stress Relief by Dynamic Stress,” International Journal of Fatigue, Vol. 29, pp. 192-196, 2007. 26. C.W. Kuo, C. M. Lin, G. H. Lai , Y. C. Chen ,Y. T. Chang, and W. Wu, “Characterization and Mechanism of 304 Stainless Steel Vibration Welding,” Materials Transactions, Vol. 48, No. 9, pp. 2319-2323, 2007. 27. C. W. Kuo, M. C. Chen, J. H. Chen, G. H. Lai, Y. T. Chang, Y. C. Chen, and W. Wu,“Inconel 690 Alloy Crystal Growth Orientation under Different Vibration Waveforms,” Materials Transactions, Vol. 48, No. 9, pp. 2316-2318, 2007. 28. F. Shun, “Tests of Residual Stress on Welded Structures under Vibratory Stress Relief,” Journal of Dalian University of Technology, Vol. 34, pp.390-393, 1994. 29. W. Wu, “Influence of Vibration Frequency on Solidification of Weldments,” Scripta Materialia, Vol. 42, pp. 661-665, 2000. 30. Musschoot, “Vibratory Stress Relief Apparatus,” Patent Number : US4718473, Jan, 12, 1988. 31. A. G. Hebel, Jr., “Stress Relief of Metals,” Patent Number : US4968359 , Nov, 6, 1990. 32. Okubo, Shigeo, “Stress Control in Solid Materials,” Patent Number : US4446733 , May, 8, 1984. 33. 劉偉隆、林淳杰、曾春風、陳文照 編譯,物理冶金,全華科技圖書股份限公 司,第21-44頁,民國93年 34. R. W. Landgraf, Morrow, J. Dean and T. Endo, “Determination of the Cyclic Stress-Strain Curves,” Paper presented at the 70th Annual Meeting of American Society for Testing and Materials , June , 1967. 35. G. P. Wonzney and G. R. Crawmer, “An Investigation of Vibrational Stress Relief in Steel,” Welding Journal, Vol. 47, No. 9, pp. 411-419, 1968. 36. R. Dreger, “Good vibes reduce stress in metal parts,” Machine Design, June, 1978. 37. Meta-Lax, Meta-Lax Stress Relief Procedure, Bonal Technologies, Inc. 1988. 38. 賴銘祥、吳威德、郭飛虎、楊燦楠,“振盪技術在銲接上的應用”,銲接與切割, 第7卷,第1期,第72-76頁,民國86年。 39. 范傑,“振動應力消除機構”,義守大學材料科學與工程研究所,碩士論文,民國88年。 40. 郭哲瑋,“同步震動銲接之特性與機構研究”,中興大學材料科學與工程研究所,博士論文,民國97年。 41. V. M. Radhakrishnan and C. R. Prasad, “Relaxation of Residual Stress with Fatigue Loading,” Engineering Fracture Mechanics, Vol. 8, pp. 593-597, 1976. 42. F. V. Lawrence, J. D. Burk, and J. Y. Yung , “Influence of Residual Stress on the Predicted Fatigue Life of Weldments,” Residual Stress Effects in Fatigue, ASTM STP 776, American Society for Testing and Materials, pp. 33-43, 1982. 43. B. Wei, “Undirectional Dendritic Solidification under Longitudinal Resonant Vibration “, Acta metallia, Vol. 40, pp. 2739-2751, 1992. 44. S. P. Tewari, “Influence of Vibration on Grain Size and Degree of Grain Refinement in Mild Steel Weldments,” Journal of Materials Research, Vol.8 , No. 9, pp. 2228-2230. 45. S. Weiss and S. Baker, “Vibrational Residual Stress Relief in a Plain Carbon Steel Weldment,” Welding Journal, Vol. 55, 1976. 46. S. P. Tewari and A. Shanker, “Effect of longitudinal Vibration on Tensile Properties of Weldment,” Welding Journal, Vol. 73, pp. 272-276, 1994. 47. N. J. Rendler and I. Vigness, “Hole - Drilling Strain Gage Method of Measuring Residual Stress”, Experimental Mechanics, 1966. 48. ASTM, “Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain-Gage Method,” pp. 715-720, 1989. 49. M. E. Hilley, J. A. Larson, C. F. Jatczak and R. E. Richlefs, Residual Stress Measurement by X-ray Diffraction, SAE Information Report J784a, pp. 19-24, 1971. 50. P. S. Prevéy, Metals Handbook, ed. 9, Vol. 10, pp. 380-392, 1986. 51. H. E. Hänninen, “Influence of Metallurgical Variables on Environment-Sensitive Cracking of Austenitic Alloys,” International Metals Reviews, Vol. 3, pp. 85-135, 1979 52. Q. Lu, L. Chen and C. Ni, “Improving Welded Valve Quality by Vibratory Weld Conditioning,” Materials Science and Engineering A, Vol. 457, pp. 246-253, 2007. 53. Caram, M. Banan, and W. R. Wilcox, “Directional Solidification of Pb-Sn Eutectic with Vibration,” Journal of Crystal Growth, Vol. 114, pp. 249-254, 1991. 54. C. D. Lundin and C. P. Chou, Welding Research Council Bulletin, Vol. 289, pp. 1-80, 1983. 55. N. Suutala, T. Takalo and T. Moisio, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical and Materials Transaction A, Vol. 11A, No. 5, pp. 717-725, 1980. 56. J. A. Brooks, A. W. Thompson and J. C. Williams, “A Fundamental Study of the Beneficial Effects of Delta Ferrite in Reducing Weld Cracking,” Welding Journal, Vol. 63, pp. 71s-83s, 1984. 57. J. C. Lippold and W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments: Part 1-A Proposed Mechanism,” Welding Journal, Vol. 58, pp. 362s-374s, 1979. 58. V. Kujanpaa, N. Suutala, T. Takalo, and T. Moisio, “Solidification Cracking in Dash Estimation of The Susceptibility of Austenitic and Austenitic-Ferritic Stainless Steel Welds,” Metal Construction, Vol. 12, No. 6, pp. 282-285, 1980. 59. P. Bilmes, A. Gonzalez, C. Llorente and M. Solari, “Effect of δ-ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints,” Welding International Vol. 10, pp. 797-808, 1996. 60. J. W. Elmer, S. M. Allen and T. W. Eagar, “Microstructure Development during Solidification of Stainless Steel Alloys,” Metallurgical Transactions A, Vol. 20A, pp. 2117-2131, Oct, 1989. 61. K. P. Rao, “Effect of Weld Cooling Rate on Delta-Ferrite Content of Austenitic Weld Metals,” Journal of Materials Science Letters, Vol. 9, No. 6, pp. 675-677, Jun, 1990. 62. A. S. M. Y. Munsi, A. J. Waddell, and C. A. Walker, “Vibratory Weld Conditioning the Effect of Rigid Body Motion Vibration During Welding,” Vol. 35, No. 4, pp. 139-143, 1999. 63. J. A. Brooks, A. W. Thompson and J. C. Williams, “A Fundamental Study of the Beneficial Effects of Delta Ferrite in Reducing Weld Cracking,” Welding Journal, Vol. 63, pp. 71s -83s, Mar, 1984. 64. J. C. Lippoid and W. F. Savage, Welding Journal, Vol. 59, No. 2, pp. 48s-58s, 1980. 65. J. A. Brooks and A.W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds,” International Materials Reviews, Vol. 36, No. 1, pp. 16-44, 1991. 66. F. C. Hull, Welding Journal, Vol. 46, No. 9, pp. 399s-409s, 1967. 67. I. Masumoto, K. Tamaki and M. Kutsuna, Transactions of the Japan Welding Society, Vol. 41, No. 11, pp. 1306-1314, 1972. 68. J. C. Borland and R. N. Younger, British Welding Journal, Vol.7, pp. 22-59, 1960. 69. E. Schurmann and I. Brauchmann, “Untersuchungen über die Schmelzgleichgewichte in der Eisenecke des Dreistoffsystems Eise-Chrom-Nickel,” Archiv fur das Eisenhüttenwesen, Vol. 48, pp. 3-8, Nov, 1977. 70. F. C. Hull, “Effect of Delta Ferrite on the Hot Cracking of Stainless Steel,” Welding Journal, Vol. 46, No. 9, pp. 399s-409s, 1967. 71. P. Bilmes, A. Gonzalez, C. Llorente, and M. Solari, “Effect of δ-ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints,” Welding Research Abroad, Vol. 43, No. 2, pp. 18-29, 1997. 72. J. Schuster, “Determination of the Primary Crystallization of Various Chromium-Nickel Steel Alloys,” Schweissen and Schneiden, Vol. 44, No. 3, pp. 59-62, 1992. 73. 周漢標,“沃斯田鐵不銹鋼銲接特性及熱裂分析(上)”,機械月刊,第十八卷,第二期,民國81年。 74. 汪建民,材料分析,中國材料科學學會,第115-118頁,民國87年。 75. E. Beraha and B. Shpigler, Color Metallography, American Society for Metals, Metals Park, Ohio, 1977. 76. G. F. Vander Voort: Metallography: Principles and Practice, McGraw-Hill Book Co., New York, 1984. 77. C. C. Goldsmith and G. A. Walker, “Measurement of Residual Stress In Thin Film Coatings,” Mechanical Properties, Performance, and Failure Modes of Coatings, Mechanical Failures Prevention Group, Gaithersburg, MD, USA Cambridge Univ Press pp. 52-53, 1984. 78. W. C. Oliver and G. M. Phar, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experimests,” Journal of Materials Research, Vol. 7 No. 6, pp. 1564-1583, 1992. 79. D. Y. Lin, G. L. Liu, T. C. Chang and H. C. Hsieh, “Microstructure Development in 24Cr–14Ni–2Mn Stainless Steel After Aging under Various Nitrogen/air Ratios,” Journal of Alloys and Compounds, Vol. 377, pp. 150-154, 2004. 80.許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,第187-198頁,民國81年。
摘要: 本研究分別以低頻(57,67Hz)、中頻(150,250Hz)、高頻(350,365,375,390Hz)三種不同的震動頻率範圍應用於AISI 304不銹鋼同步震動銲接。藉由光學顯微鏡觀察銲道顯微結構,並利用影像分析量測殘留δ-肥粒鐵含量,再以X-ray繞射分析探討晶體結構變化與量測殘留應力,其機械性質則以微小維氏硬度計與奈米壓痕分析。 經由金相顯微結構觀察顯示,同步震動銲接可使晶粒加速成核,晶粒尺寸細 化,並且於共振頻(375Hz)時,晶粒細化效果最佳。殘留δ-肥粒鐵含量方面,同步震動銲接造成殘留δ-肥粒鐵含量下降與殘留δ-肥粒鐵的細化,且隨著振幅的提高,震動頻率為共振頻(375Hz)時,能得到最少殘留δ-肥粒鐵含量(4.07 %)。X-ray繞射的結果顯示,AISI 304不銹鋼在有震動與無震動銲接情形下,都是以γ(111) 優選方向生長。且經過震動後使得材料繞射峰的半高寬有明顯地增寬,其主要原因為晶粒細化所造成,且當震動頻率能量越高(共振頻)時效果最明顯。 由殘留應力結果顯示,同步震動銲接能有效的降低殘留應力,且隨著振幅的 增加,應力消除之效果更為優良,在共振頻能得到最低殘留應力(139MPa)。機械性質分析方面,在低、中頻進行同步震動銲接能使得硬度及楊氏係數略為提高,而震動頻率增加至共振頻時,硬度值提升7.6 %,楊氏係數由170.2增加至196.5GPa。 歸納整個研究結果可知,同步震動銲接於共振頻能有效的造成晶粒細化,並降低殘留δ-肥粒鐵含量與殘留應力,提升機械性質。
The Study of AISI 304 stainless steel is focus on vibration welding under low, middle, and high frequencies with (57,67Hz), (150,250Hz), and (350,365,375,390Hz), respectively. Microstructure, residual δ-ferrite content, crystal structure, residual stress and mechanical properties of the weld bead have been investigated by using optical microscope (OM), X-ray diffraction (XRD), Vickers hardness tester and Nano-indentation, respectively. The results showed that the refinement of grain size after vibration welding, especially in resonance frequency. With regard to the residual δ-ferrite content, it decreased with the amplitude of vibration increasing. It was noted that residual δ-ferrite content was the least 4.07 % in vibration welding with resonance frequency. From XRD results, (111) was appeared the preferred orientation of γphase during vibrationless and vibration welding. However, FWHM (Full Width at Half Maximum) of X-ray diffraction profile broadened after vibration welding owing to grain refined. In addition, residual stress can be effectively reduced by vibration welding. The residual stress has decreased trend while the amplitude is increased. As a result, 137 MPa of residual stress can be obtained in resonance vibration welding. As to the mechanical properties analysis, the hardness and Young's Modulus was enhanced in vibration welding with low and middle frequencies. In addition, the hardness has obvious raised about 7.6%, Young's Modulus increased from 170.2 to 196.5MPa while resonance frequency was applied. Summarize the total results, resonance vibration welding possessed a less amount of residual δ-ferrite, lowest residual stress, and grain refinement weld bead which have better mechanical properties.
URI: http://hdl.handle.net/11455/10247
其他識別: U0005-2007200610365100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200610365100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.