Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10252
標題: 退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究
Effect of Annealing Temperature on Microstructures and Mechanical Properties of As-Rolled Mg-9wt.%Li-3wt.%Al-1wt.%Zn Alloy Sheets
作者: 林尚秋
Lin, Shang-Chiu
關鍵字: Mg-Li-Al-Zn alloy
Mg-Li-Al-Zn合金
Annealing embrittlement
AlLi phase
Grain bounday
退火強(脆)化
AlLi相固溶
晶界
出版社: 材料科學與工程學系所
引用: 1. Y. Kojima, Mater. Sci. Forum, 350-351 (2000) 3-18. 2. B. L. Mordike and T. Ebert, Mater. Sci. Eng., A302, (2001) 37-45. 3. 邱垂泓,“鎂板的應用及其製造方法” ,工業材料雜誌,190期,2002年10月,164-168. 4. 陳錦修,“鎂合金在汽車工業之應用” ,工業材料雜誌,186期,2002年6月,148-152. 5. M. K. Kulekci, Int. J. Adv. Manuf. Technol. 6. T. Kobayashi and Kogyo Zairyo (Engineering Materials) (Japan), 45 (1997) 67-70. 7. 梁志鴻,“鎂合金在自行車產業之應用”,工業材料雜誌,174期,2001年6月,149-160. 8. 楊俊彬,“3C產業用鎂合金外殼鍛件之開發” ,鍛造,第十四卷,第一期,2005年7月,35-45. 9. 卓學淵,“AZ91D 鎂合金壓鑄件之表面缺陷分析—NB 上蓋”, 工業材料雜誌,178期,2001年10月,115-120. 10. Fr.-W. Bach, B.-A. Behrens, M. Rodman, A. Rossberg and G. Kurz, JOM, 57 (2005) 57-61. 11. 吳春甫,邱先拿,“板材沖鍛成形技術應用於高精度平板型零件開發”,鍛造,第九卷,第四期,2000年12月,56-63. 12. 伏和中,高永洲,王凱弘,“鎂合金鍛造技術”,鍛造,第九卷,第一期,2000年3月,24-36. 13. 陳信吉,陳復國,“AZ系鎂合金沖鍛成型之研究” ,工業材料雜誌,198期,2003年6月,126-132. 14. 王建義,“鎂合金板材之壓型加工技術” ,工業材料雜誌,170期,2001年2月,132-136. 15. R. Ninomiya and K. Miyake, J. Jpn. Inst. Light Met., 51 (2001) 509-513. 16. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese and M. Niemeyer, Mater. Trans., 42 (2001) 1160-1166. 17. H. Okamoto, P. R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1990. 18. R. A. Munroe, Met. Prog., 90 (1966) 89. 19. K. Matsuzawa, T. Koshihara and Y. Kojima, J. Jpn. Inst. Light Met., 39 (1989) 45-51. 20. 王建義,“超輕量鎂合金開發”,工業材料雜誌,184期,2002年4月,132-136. 21. A. Yamashita, Z. Horita and T. G. Langdon, Mater. Sci. Eng., A300 (2001) 142-147. 22. A. Bussiba, A. B. Antzy, AShtechman, S. Ifergan and M. Kupiec, Mater. Sci. Eng., A302 (2001) 56-62. 23. J. C. Tan and M. J. Tan, Mater. Sci. Eng., A339 (2003) 124-132. 24. V. M. Segal, Mater. Sci. Eng., A271 (1999) 322-333. 25. L. Cisar, Y. Yoshida, S. Kamado, Y. Kojima and F. Watanabe, Mater. Trans., 44 (2003) 476-483. 26. M. Sahoo and J. T. N. Atkinson, J. Mater. Sci., 17, (1982) 3564-3574. 27. R. E. Lee and W. J. D. Jones, J. Mater. Sci., 9 (1974) 469-475. 28. M. E. Drits, F. M. Yelkin, I. I. Gurev, B. I. Bondarev, V. F. Trokhova, A. D. Sergievskaya and T. N. Osokina (1980) Magnesium-lithium alloys, Moscow: Metallurgia (in Russian ). 29. A. Alamo and D. Banchik, J. Mater. Sci., 15 (1980) 222-229. 30. J. B. Clark and L. Starkey, J. Inst. Met., 86 (1955-1956) 272-276. 31. H. C. Lin, K. M. Lin, H. M. Lin and C. H. Yang, M. T. Yeh, Magnesium Technology 2005, 275-280. 32. R. K. Singh, J. Mater. Sci. Lett., 13 (1994) 744-745. 33. K. Schemme, Metall., 45 (1991) 568-572. 34. ASM, “Magnesium alloys”, Metals Handbook 9th Edition, 6 (1985) 425-434. 35. R. K. Singh, B. Sudhakar, C. R. Chakravorty., Indian Foundry J., 35 (1989a) 21-24. 36. A. Sivashanmugam, T. P. Kumar, N. G. Renganathan and S. Gopukumar, Journal of Applied Electrochemistry, 34 (2004) 1135-1139. 37. 廖志傑,“鎂鋰合金板才沖壓成形性之研究”,國立台灣大學機械工程研究所碩士論文(2006). 38. Wu, Wei-chung. United States Patent 6694039. 39. F. W. Bach, S. Mirko and J. Christina, Mater. Sci. Forum, 419-422 (2003) 1037-1042. 40. H. Takuda, H. Mastusaka, S. Kikuchi and K. Kubota, J. Mater. Sci., 37 (2002) 51-57. 41. H. Takuda, Kikuchi, T. Tsukada, K. Kbota and N. Hatta, Mater. Sci. Eng., A271, (1999) 251-256. 42. J. Y. Wang, W. P. Hong, P.C. Hsu, C. C. Hsu and S. Lee, Mater. Sci. Forum, 419-422 (2003) 165-170. 43. 王紹駿,“鎂合金板才沖鍛成型模具設計之研究”,國立台灣大學機械工程研究所碩士論文(2004). 44. 廖志傑,“鎂鋰合金板才沖壓成形性之研究”,國立台灣大學機械工程研究所碩士論文(2006). 45. H. Takuda, T. Enami, K. Kubota and N. Nata, J. Mater. Proc. Techno., 101 (2000) 281-286. 46. A. Yamamoto, T. Ashida, Y. Kouta, K. Kim, S. Fukumoto and H. Tsubakino, J. Jpn. Inst. Light Met., 51 (2001) 604-607. 47. T. Aida, H. Hatta, C. S. Ramesh, S. Kamado and Y. Kojima, in: G. W. Lorimer (editor), Proceedings of the third International Magnesium Conference, Institute of Materials, London, UK, (1997) 343-358. 48. H. Hatta, C. Ramesh, S. Kamado and Yo. Kojima, J. Jpn. Inst. Light Met., 47 (1997) 202-207. 49. N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota and K. Higashi, Scripta Materialia, 36 (1997) 551-555. 50. Z. Drozd, Z. Trojanova, S. Kudela, Journal of Materials and Compounds, 378 (2004) 192-195. 51. R. M. Brodskaya , A. M. Glagoleva and B. D. Chukhin, Met. Sci. Heat Treat., 17 (1975) 450-451. 52. M. J. Kaufman, A. A. Morrone, R. E. Lewis, Scripta Metall. Mater., 27 (1992) 1265-1270. 53. D. H. Kim, Y. S. Han, H. I. Lee and B. Cantor, Scripta Metall. Mater., 31 (1994) 819-824. 54. Y. H. Hwang, C. H. Han, Y. W. Kim, B. J. Cho, D. H. Kim and C. P. Hong, J. of Korean Inst. of Met. and Mater., 35 (1997) 1653-1659. 55. G. S. Song, M. Staiger and M. Kral, Mater. Sci. Eng., A371, (2004) 371-376. 56. W. R. D. Jones, J. Inst. Met., 84 (1955-1956) 364-378.
摘要: In this study, the effect of annealing temperature on microstructure and mechanical properties of as-rolled Mg-9wt.%Li-3wt.%Al-1wt.%Zn (LAZ931) alloy sheet was studied. As-extruded LAZ931 alloy plates was rolled from 3mm to 1mm in thickness(67% of reduction ratio), and then annealed at the temperature in the range of 100℃ to 350℃ with increasing steps of 50℃ for the 1 minute to 2 hours. The mechanical properties of the LAZ931 alloy sheet were examined by tensile and Vickers hardness tests. The crystalline structure and microstructures were examined by X-ray diffractometer (XRD) and field-emission scanning electron microscopy (FESEM), respectively. The elongation of the as-rolled LAZ931 alloy sheet increased from room temperature to 150℃, and then decreased at temperature higher than 200℃. In particular, the specimens had remarkably high tensile strength and extremely low elongation (only about 0.5%) at temperature higher than 300℃. The results of vickers hardness testing indicate that hardness of β phase (bcc Li) increases by quenching after isothermal holding for 2 hours at a temperature higher than 200℃, and show similar trend with tensile strength. This means that β phases is the key phases after annealing treatment. According to the XRD and the microstructural observations, the growth of brittle AlLi phase lead to the decreasing of elongation at temperature higher than 200℃. In addition, the AlLi phase dissolved in bcc Li matrix at temperature higher than 300℃. The dissolution of the AlLi phase into the β phase (bcc Li) matrix maybe was the reason lead to the increasing of tensile strength at temperature higher than 300℃. The phenomenon of annealing embrittlement (annealing temperature higher than 300℃) could be related to the formation of low ductility α phase (hcp Mg) and brittle AlLi phase in the grain boundary of bcc Li phase.
本研究探討退火溫度對Mg-9Li-3Al-1Zn(wt.%)(LAZ931)合金軋延板材微觀組織與機械性質之影響。將(α+β)雙相LAZ931合金擠型板,由厚度3 mm軋延至1mm(軋延率67 %),施以不同溫度(100℃~350℃,以50℃為單位)與時間(1分鐘至2小時)的退火處理。將退火處理後之薄板進行微硬度與拉伸試驗,瞭解薄板硬度、延伸率與強度的表現,並以XRD與FE-SEM分析結晶取向與顯微組織的變化。雙相LAZ931合金薄板在退火時間2小時的情況下,由as-rolled至150℃溫度區間內,延伸率隨著退火溫度升高而提升。當退火溫度高於200℃時,材料延伸率漸減,且於高於300℃退火處理後,強度明顯升高且幾無延性(僅0.5 %)。由微硬度試驗結果指出β相硬度於溫度200℃退火處理後硬度升高,與拉伸強度有相同趨勢,證實β相為影響退火後機械性質轉變的相。溫度高於200℃時,觀察顯微結構發現脆性的AlLi相於β相晶粒與晶界成長的現象,導致退火處理後強度升高及延伸率下降。溫度高於300℃的退火強化與脆化現象,AlLi相固溶為拉伸強度與β相硬度明顯升高的主因,而β相晶界附近形成強度較高且常溫下滑移系統少之hcp結構α-Mg相與晶界上佈滿脆性之AlLi相,導致材料的脆化。 關鍵詞:Mg-Li-Al-Zn合金、退火強(脆)化、AlLi相固溶、晶界。
URI: http://hdl.handle.net/11455/10252
其他識別: U0005-2008200613030300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200613030300
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.