Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10255
標題: 自然時效對7050鋁合金顯微結構與機械性質研究
The Study of Microstructures and Mechanical Properties after Natural Aging in 7050 Aluminum Alloys
作者: 曾光輝
Tzeng, Kuang-Hui
關鍵字: Natural Aging
自然時效
Artificial Aging
hardness
UTS
EC
人工時效
硬度
抗拉強度
導電值
出版社: 材料科學與工程學系所
引用: 1. J. J. Thompson, E. S. Tankins, and V. S. Agarwala, “A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7xxx Aluminum Alloys, ” Materials Performance, Vol. 26, pp. 45-52, 1987. 2. L. K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, M.Knutson-Wedel, G. Waterloo, D. Schryvers ,and L. R.Wallenberg, “G.P-Zones in Al-Zn-Mg Alloys and their roles in artificial aging, ” Acta mater. 49, pp. 3443-3451, 2001. 3. I. J. Polmear: “Light Alloys Metallurgy of the Light Metals, ” 2nd ed.,Edward Arnold, London, England, pp. 18-143 , 1989. 4. J. E. Hatch: “Aluminum-Properties and Physical Metallurgy, ” ASM, Metal Park, OH, 1983. 5. Robert E. Reed-Hill, “Slip System in Different Crystal Forms,” Physical Metallurgy Principles, 3th Edition, pp. 140~146, 1994. 6. 黃振賢,“機械材料”,新文京開發出版(股)公司,台北,台灣,第339頁,民國94 年7月。 7. 賴耿陽,“非鐵金屬材料”,復漢出版社,台北,台灣,第151~168 頁,民國71 年。 8. 陳克昌,“非鐵金屬材料的熱處理”,材料科技,逢甲大學材料科學系,第71~78 頁,民國72 年。 9. 金重勳,“熱處理”,復文書局,第463~475頁,民國80年。 10. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, ” London, Butterworth’s, Ltd., pp. 253-266, pp. 635, 1976. 78 11. K. Asano ,and K. I. Hirano: “Precipitation Process in an Al-Zn-Mg Alloy, ” Trans. JIM, Vol. 9, pp. 24-34, 1968. 12. G. W. Lorimer ,and R. B. Nicholson: “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system, ” Acta Metallurgica, Vol. 14, pp.1009-1013, 1966. 13. P. N. T. Unwin,and R. B. Nicholson: “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys, ” Acta Metallurgica, Vol. 17, pp. 1379-1393, 1969. 14. A. Guinier, Compte Rend. Vol. 206, pp. 164, 1938. 15. J.J. Thompson, E. S. Tankins and V. S. Agarwala: “ A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7XXX Aluminum Alloys, ” Materials Performance , pp. 45-52, 1987. 16. T.H. Sanders Jr. ,and E. A. Starke Jr. : “ Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys, ” Metall. Trans., Vol. 7A, pp. 1407-1418, 1976, 17. M.O. Speidel, and M.V. Hyatt: “Advances in Corrosion Science and Technology, ” Vol. 2, Plenum Press, NY., pp. 115-127, 1972. 18. C.E. Deiter: “Mechanical Metallurgy, ” 3rd ed.,McGraw-Hill, pp. 65-158, 1986. 19. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚: “工程材料科學”,全華科技圖書出 版,台北,台灣,第433-486頁,民國82 年7月。 20. C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The development and application of improved aluminum-lithium alloys, ” Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, 79 California USA, April, pp. 363-392, 1983. 21. 劉國雄、林樹均、葉均蔚, “鋁及鋁合金的製造”,全華科技圖書出版,民國74。 22. B.Sarkar,M.Marek and EA.Starke.Jr., “The Effect of Copper Content and Heat Treatment on the stress Corrosion Characteristics of Al-6Zn-2Mg-XCu Alloys,” Metallurgical Transaction A,Vol.12A, pp. 1939-1943, 1981. 23. 黃振賢,“機械材料”,文京圖書股份有限公司,新竹,第311~331 頁,民國69 年。 24. M. O. Speidel: “Stress Corrosion Cracking of aluminum alloys,” Metall.Trans.A, Vol. 6A, pp. 631-642, 1975. 25. N. Adler, R. DeIASI ,and G. Geschwind: “Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, ” Metall. Trans., Vol. 3, pp. 3191-3200, 1972. 26. A.J. Sedriks, J. A. S. Green ,and D. L. Novak: “The Influence of Heat Treatment on the tress-Corrosion Susceptibility of a Ternary Al-5.3 Pct Zn-2.5 Pct Mg Alloy, ” Metall. Trans., Vol. 4, pp.1992-1994, 1973. 27. J.K. Park, and A.J. Ardell: “Precipitate Microstructure of Peak-aged 7075 Al, ” Scripta Metallurgica, Vol. 22, No. 7, pp. 1115-1119, 1988. 28. W. Lacom, H.P. Degischer, A.M. Zahra, and C.Y. Zahra: “On Calorimetric and Electron Microscopic Studies of Al-Zn-Mg Alloys, ” Scripta Metallurgica,vol. 14, pp. 253-254, 1980. 29. F. Habiby, A. Ul Haq, F.H. Hashmi ,and A.Q. Khan: “ Some Remarks on the Hardness and Yield Strength of Aluminum Alloy 7075 as a Function of Retrogression Time, ” Metall. Trans. A., Vol. 18A, pp. 350-353, 1987. 80 30. D. J. Lloyd ,and M. C. Chaturvedi: “ A calorimetric study of aluminum alloy AA-7075, ” J.ofMater. Sci., Vol. 17, pp. 1819-1824, 1982. 31. P.N. Adler ,and Richard DeIASI: “Calorimetric Studies of 7000 Series Aluminum Alloys:II. Comparison of 7050, and RX720 Alloys, ” Metall.Trans. A., Vol. 8A , pp.1185-1190, 1977. 32. Richard De IASI ,and P.N. Adler: “ Calorimetric Studies of 7000 Series Aluminum Alloys: I.Matrix Precipitate Characterization of 7075, ” Metall.Trans. A., Vol. 8A, pp.1177-1183, 1977. 33. E.S. Tankins ,and W.E. Frazier: “Differential scanning calorimetry studies of the corrosion-resistant behavior in the 7000 series aluminum alloys, ” Materials Performance, NACE, pp. 37-44, 1987. 34. J. Gjonnes ,and CHR. J. Simensen: “An electron microscope investigation of the microstructure in an Aluminum-Zinc-Magnesium alloy, ” Acta Metall. Vol.18, pp. 881-890, 1970. 35. J.K. Park, and A.J. Ardell: “ Correlation between Microstructure and Calorimetric Bebavior of Aluminum Alloy 7075 and Al-Zn-Mg Alloys in Various Tempers, ” Mater. Sci. and Eng., A114, pp. 197-203, 1989.。 36. R. E. Reed-Hill,and R. Abbaschian: “ Physical Metallurgy Principles,”3rd ed.,Boston, PWS Publishing Company, pp. 515-535, 1991. 37. LIU Shengdan,ZHANG Yong, LIU Wenjun,DENG Yunlai,and ZHANG Xinming, “Effect of stepquenchingon microstructure of aluminum alloy 7055[J]. , ” Transactions of Nonferrous MetalsSociety of China, pp. 201, 2010. 38. Robert E. Read-Hill, “Physical Metallurgy Principles, ” 3rd ed., pp.192-193 , 1992. 81 39. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料科學”,全華科技圖書出 版,第339-342頁,民國88年。 40. C. E. Deiter, “Mechanical metallurgy, ” 3rd ed., McGraw-Hill, pp. 221-227, 1986. 41. Thomas H. Courtney, “Mechanical Behavior of Materials, ” Second Edition, McGraw-Hill Higher Education, pp. 196-210, 2000. 42. ASTM, “Introduction to Tensile Testing, ” Metals Handbook 8th Edition,Vol.8, 1976. 43. ASTM Standards E112-96,“Standar Test Method for Detemining Average Grain Size, ” 2003. 44. ASTM Standards E18-02, “Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ” 2003. 45. ASTM Standards B557-94,“Standar Test Method for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products,” 1994. 46. 汪建民,“材料分析”,中國材料學會,民國90年。 47. Gurbuz R, Alpay S.P., “Effect of coarse second phase particle on fatigue crack propagation of an Al-Zn-Mg-Cu alloy, ” Scripta Metallurgica et Matenrialia, V30 n11, J un l, pp.1373~1376, 1944. 48. STM Standards G39-90, “Standar Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens, ” 1994. 49. J.K. Park, and A.J. Ardell,“ Microstructure of the Commercial 7075 AL Alloys in The T651 and T7 Tempers,” Metallurgical Tramsaction A,Vol.14A, pp. 1957-1965, 1983. 50. 劉偉隆、林淳杰、曾春風、陳文照,“物理冶金”,全華科技圖書,第15-29,16-20 頁,民國93年8月。
摘要: 鋁合金因為比強度高、重量輕、高導熱(電)性、良好的延展率與易於加工成形,故大量應用市場於型材之擠製,在手術醫療器材、飛機、3C 產品、攜帶型系統、板球棒運動器材、自行車、汽車及線性滑軌等被廣泛的利用。 本研究主要在探討使用7050鋁合金在不同自然時效時間條件,不做人工過時效之微結構組織與機械性質變化,並與經過T73人工時效熱處理條件之微結構組織及機械性質相比較,觀察自然時效對材料影響度。 本實驗以7050鋁合金試棒之Al-Zn-Mg-Cu合金為對象,將分A、B兩組,A組試棒先做475 ℃,並持溫1小時熱處理,再放置於室溫中共做0 hr、50 hr、150 hr、250 hr、四種不同自然時效時間,未人工時效;B組則將試棒做475 ℃,並持溫1小時熱處理,再放置室溫中共做0 hr、50 hr、150 hr、250 hr、四種不同自然時效時間,經120 ℃/ 10 hr,177 ℃/ 8 hr之T73人工時效處理。 透過光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)的觀察、EDS 成份分析、XRD分析、導電度量測,觀察微結構組織及使用拉伸試驗(tensile test)、硬度等方法來進行機械性質探討與分析。 由實驗結果可知,在A組中隨自然時效時間增加,硬度逐漸增加,當在自然時效0~50 hr其硬度變化率達到最大,導電值隨時間增加有下降趨勢,於此階段導電變化率最大,故此階段析出速度最快;B組經T73人工時效,於自然時效50 hr硬度可達88 HRB,抗拉強度589.2 MPa及降伏強度545.2 MPa為最高,導電度38.9 %IACS為最低,而當自然時效50 hr後即分別在150 hr、250 hr時,其硬度、抗拉強度逐漸下降,分別為579.2 MPa、572.6 MPa,導電度則逐漸上升為39.3%IACS及39.6%IACS,伸長率部份則介於14.6~15%之間,無明顯差異。 在晶粒尺寸方面,經量測計算,並未有太大差異,因此自然時效對晶粒尺寸並未有太大影響。故自然時效在不做人工過時效狀態下,其隨時間增加,硬度亦增加,經過人工時效後,則在自然時效50 hr會有最佳強度,隨時間增加,硬度降低。
Aluminum alloy is mass-produced in the market for its material extrusion due to high opposite strength, light in weight and high heated electric conductivity and excellent superconductivity and it is easily shaped to be manufactured and it is broadly used in many fields, such as operational medical equipments, aircrafts, 3C products, mobile devices, bicycles, automobiles, all kinds of sport rackets and linear rails. The study is mainly discussed to experiment different natural aging by using over-aged ways and ends up getting the impact towards aluminum alloy 7050 microstructure and machinery property. The experiment targets Al-Zn-Mg-Cu of 7050 test bar and divides A and B groups. A group will proceed 475°C and stay for one hour and quickly quenches to room temperature. There are four different natural agings-0 hr, 50 hr, 150 hr and 250 hr. The process of B group will proceed 475°C and stay for one hour , and quickly quenches to room temperature with four different natural agings-0 hr, 50 hr, 150 hr and 250 hr, and final T73 artifictial aging 120℃ for 10 hr and 177℃ for 8 hr. I proceed the research and analysis via the observation of OM,SEM,EDS and XRD. Analysis of components, tensile test, hardness and electrical conductivity and etc. According to the result of the experiment, A group owns more precipitant as the natural aging is increased. When natural aging at 250Hr, precipitant quantities and hardness are the maximum, but the electric conductivity is the minimum. So this process the base speed of precipitant. For B group after T73, with OM observation, the precipitant is the densest and smallest at natural aging 50Hr. much dense, so the hardness reaches HRB 88, the ultimate tensile strength reaches 589.2 MPa and the yield strength reaches 545.2 MPa. The lowest conductivity is 38.9%IACS. When the test is conducted at 150 hr and 250 hr after natural aging 50 hr, both the hardness is 579.2 MPa、572.6 MPa and UTS gradually decline. Electric is 39.3%IACS and 39.6%IACS conductivity increases and the stretch remains the same. Therefore, with natural aging without artificial aging treatment, the hardness grows as time increased. After artificial aging treatment, the optimum strength is at natural aging 50 hr.The grain size is almost the same. Therefore, the main concern to influence the strength is the particle size of the second phase and volume percentage.
URI: http://hdl.handle.net/11455/10255
其他識別: U0005-2108201115483200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201115483200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.