Please use this identifier to cite or link to this item:
標題: Characterization of 5V High Voltage LiNixMn2-xO4 for Cathode Materials in Thin Film Lithium-Ion Batteries
5V 高電位鋰鎳錳氧化物薄膜鋰離子電池正極材料之特性研究
作者: 方康瑋
Fang, Kang-Wei
關鍵字: 5V high voltage cathode materials
5V 高電位正極材料
spinel structure
thin film lithium-ion batteries
出版社: 材料科學與工程學系所
引用: [1] J.-M. Tarascon and M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature 414 (2001) 359-367. [2] K. Kariatsumari. Next-Gen Batteries Going All-Solid: Demand for Large Size Batteries in EVs and Stationary Use Driving Development. (2010). [3] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob and D. Aurbach. A review of advanced and practical lithium battery materials. J. Mater. Chem. 21 (2011) 9938-9954. [4] T. Ohzuku, S. Takeda and M. Iwanaga. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 81-82 (1999) 90-94. [5] C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux. Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2_yO4 (0 ≦ y ≦ 1). Solid State Ionics 81 (1995)167-170. [6] H. Kawai, M. Nagata, H. Tukamoto and A. R. West. High-voltage lithium cathode materials. J. Power Sources 81-82 (1999) 67-72. [7] K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita. Preparation and electrochemical investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x= 0.5, 1) cathode materials for secondary lithium batteries. J. Power Sources 68 (1997) 604-608. [8] Y. Ein-Eli, S. H. Lu and M. A. Rzeznik. LiCuxMn2-xO4 Spinels (0.1 ≦ x ≦ 0.5): A New Class of Cathode Materials for Li Batteries. J. Electrochem. Soc. 145 (1998) 3383-3386. [9] G. T. K. Fey, W. Li and J. R. Dahn. LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells. J. Electrochem. Soc. 141 (1994) 2279-2282. [10] G. T. K. Fey, J. R. Dahn, M. J. Zhang and W. Li. The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material. J. Power Sources 68 (1997) 549-552. [11] W. F. Howard and R. M. Spotnitz. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources 165 (2007) 887-891. [12] J. Wolfenstine, J. Read and J. L. Allen. Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J. Power Sources 163 (2007) 1070-1073. [13] J. Wolfenstine and J. Allen. Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142 (2005) 389-390. [14] G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim and H. J. Sohn. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 4 (2011) 1986-2002. [15] S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. L. Cras, S. Jouanneau and S. Martinet. High voltage spinel oxides for Li-ion batteries: From the material research to the application. J. Power Sources 189 (2009) 344-352. [16] J. B. Goodenough and Y. Kim. Challenges for Rechargeable Li Batteries. Chem. Mater. 22 (2010) 587-603. [17] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang and Y. K. Sun. Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332. Chem. Mater. 16 (2004) 906-914. [18] R. Santhanam and B. Rambabu. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 195 (2010) 5442-5451. [19] H. Xia, Y. S. Meng, L. Lu and G. Ceder. Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4-δ Thin-Film Electrodes Prepared by Pulsed Laser Deposition. J. Electrochem. Soc. 154 (2007) A737-A743. [20] Q. Sun, X. H. Li, Z. X. WANG and Y. Ji. Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans. Nonferrous Met. Soc. China 19 (2009) 176-181. [21] T. F. Yi, Y. R. Zhu and R. S. Zhu. Density functional theory study of lithium intercalation for 5 V LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics 179 (2008) 2132-2136. [22] Y. Fan, J. Wang, X. Ye and J. Zhang. Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method. Materials Chemistry and Physics 103 (2007) 19-23. [23] G. Q. Liu, Y. J. Wang, Qilu, W. Li and Chenhui. Synthesis and electrochemical performance of LiNi0.5Mn1.5O4 spinel compound. Electrochimica Acta 50 (2005) 1965-1968. [24] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, J. Chastain and R. C. King, Jr. Handbook of X-ray photoelectron spectroscopy, ULVAC-PHI, Inc. and Physical Electronics USA, Inc. p. 261. [25] J. C. Arrebola, A. Caballero, M. Cruz, L. Hernán, J. Morales and E. R. Castellón. Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries. Adv. Funct. Mater. 16 (2006) 1904-1912. [26] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben. Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, MN (1992). [27] K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita. A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries. J. Electrochem. Soc. 143 (1996) 1607-1613.
摘要: In order to satisfy the need of batteries with the high voltage and the high current, the coating of 5V high voltage LiNixMn2-XO4 on stainless steel has been successfully prepared by a novel method for cathodes in thin film lithium batteries in this study. Through cathodic polarization tests, field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), x-ray diffraction (XRD) analysis and charge/discharge tests, it was found that the oxidation peaks at 4.02, 4.7 and 4.78 V and reduction peaks at 4.72, 4.65 and 3.97 V resulted from the overall cell reaction for the Li extraction/insertion reaction from/in the flake-like LiNixMn2-XO4 with spinel structure. The LiNixMn2-XO4 film deposited in solution with the ion ratio of Mn to Ni 4:1 and annealed at 500◦C, revealed the greater capacity 188 and 120 mAh/g for the first charge and discharge, respectively and 105 for the 20th cycle discharge at 50 μA/cm2 between 3.4 and 4.9 V, compared with other conditions. It was concluded that the capacity was related to the crystallinity and phase purity of LiNixMn2-XO4.
為了滿足未來對高電位大電流電池之需求,本研究成功在不鏽鋼基材上以創新方法合成5V 高電位正極材料LiNixMn2-XO4應用於薄膜鋰電池。經由陰極極化,FE-SEM,XRD,循環伏安,充放電測試,發現此片狀正極材料具尖晶石結構之氧化電位分別為4.02 V,4.7 V和4.78 V (vs. Li/Li+),還原電位分別為4.72 V,4.65 V和4.39 V (vs. Li/Li+)。退火溫度和溶液中錳離子與鎳離子之比例,均會影響LiNixMn2-XO4之純度與結晶性,最後導致其充放電性能之優劣,本研究建議溶液中錳跟鎳的比例為四比一且在退火溫度500◦C時具有較好的性能。在此沉積條件下,LiNixMn2-XO4薄膜半電池在3.4至4.9 V之間以50 μA/cm2電流密度充放電20圈,第一圈放電電容量達120 mAh/g,第二十圈放電電容量達105 mAh/g。
其他識別: U0005-2208201111151000
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.