Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10294
DC FieldValueLanguage
dc.contributor薛富盛zh_TW
dc.contributor林義成zh_TW
dc.contributor鄭憲清zh_TW
dc.contributor侯光華zh_TW
dc.contributor張立信zh_TW
dc.contributor.advisor吳威德zh_TW
dc.contributor.author郭哲瑋zh_TW
dc.contributor.authorKuo, Che-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:44:44Z-
dc.date.available2014-06-06T06:44:44Z-
dc.identifierU0005-2308200614475100zh_TW
dc.identifier.citation【1】 E. Enke, “Stress Relieven by Vibration, “Maschinenmarket, Vol. 61, pp. 37-38, 1955. 【2】 G. Gnirss, “Vibration and stress relief - historical development, theory and practical application” Indian Welding Journal, Vol. 22, pp. 11-16, 1990. 【3】 K. Zeig, “Stress relieving by vibration or heat treatment?” Maschinenbautechnik, Vol. 11, pp. 423-429, 1962. 【4】 H. Buhler and H. Pfalzgraf, “Studies of weld residual stress relieving by vibration,” Schweissen und Schneiden, Vol. 16, pp. 178-183, 1964. 【5】 H. Buhler and H. Pfalzgraf, “Study of residual stress relief in iron and steel by means of vibration and long term ageing in air,” VDI-Forschungsheft 494, 1962. 【6】 Residual stress reliving of casting in grey iron. VDI-Merkblatt N1, 1964. 【7】 J. Lokshin, “Vibration treatment and dimensional stabilization of castings,” Russian Castings Production, No. 3, pp. 129-132, 1965. 【8】 J. Lokshin, “Vibration treatment and dimensional stabilization of castings,” Litejnoe Proisvodstov, No. 10, pp. 38-41, 1965. 【9】 G. Adoyan et at. “The Vibratory Stress Relieving of Castings” Machinesand Tooling, Vol. 38, pp. 18-22, 1967. 【10】 H. Buhler and H. Pfalzgraf,” Discussion on the Reduction of Residual Stresses in Workpieces Made of Cast Iron,” Weristati und Betrieb, Vol. 171, pp.36-43, 1964. 【11】 H. Buhler and H. Pfalzgraf, “Relief of Casting Stresses by Jotting: Part 1,” Foundry Trade Journal, Vol. 118, pp. 567-569, 1965. 【12】 Bonal Technologies, Inc.,”Meta-Lax Stress Relief Procedure,” 1997. 【13】 August G. Hebel Jr. “Subresonant Vibrations Relieve Residual Stress,” Metal Progress, Vol. 128, pp. 51-55, 1985. 【14】 R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of Its Effectiveness, “Journal of Engineering Materials and Technology, Vol. 102, pp. 169-176, 1980. 【15】 E. Klotzbucher and H. Kraft, “Residual Stresses in Science and Technology, “ (DGM Metallurgy Information, USA, 1987) p. 959. 【16】 C. A. Walker, A. J. Waddell and D. J. Johnston, “Vibratory Stress Relief – an investigation of the underlying process,” Proc. Inst. Mechanical Engineers, Vol. 209, pp. 51-58, 1995. 【17】 G.P. Wozney and G.R. Crawmer, “An investigation of vibrational stress relief in steel,” Welding Research Supplement, pp. 411–419, 1968. 【18】 S. Rich, “Quantitative measurement of vibratory stress relief,” Weld Engineer, No. 3, pp. 44-45, 1962. 【19】 http://www.meta-lax.com/index.html 【20】 J.E. Agapakis and K. Masubuchi, “Analytical Modeling of Thermal Stress Relieving in Stainless and High Strength Steel Weldments,” Welding Journal, Vol. 33, pp. 161-166, 1954. 【21】 B. Kuvin, “Good vibrations tress-relieve welds,” Welding Design & Fabrication, Vol. 68, pp. 22-24, 1995. 【22】 F. Shun, “Tests of residual stress on welded structures under vibratory stress relief,” Journal of Dalian University of Technology, Vol. 34, pp. 390-393, 1994. 【23】 I. Rak, V. Gliha, L. Sidjanin, and B. Petrovski, “J-Integral testing of SA weldments on HSLA steel regarding different treatments after welding,” International Journal for the Joining of Materials, Vol. 2, pp. 84-93, 1990. 【24】 M.N. James and A.E. Paterson, “Fatigue performance of 6261-T6 aluminium alloy - constant and variable amplitude loading of parent plate and welded specimens,” International Journal of Fatigue, Vol. 19, pp. 109-118, 1996. 【25】 R.A. Claxton and A. Lupton, “Vibratory stress relieving of welded fabrications,” Welding and Metal Fabrication, Vol. 59, pp. 541-542, 1991. 【26】 G. Gnirss, “Vibration and vibratory stress relief: Historical development, theory and practical application” Welding in the World, Vol 26, pp. 284-291, 1988. 【27】 R. Delin, C. Ligong and N. Chunzhen, “Vibratory stress relief of welded structure in China,” Materials at high temperatures, Vol. 23, pp. 245-250, 2006. 【28】 E.A. Solo''eva, A.F. Petrov, O.G. Chikalidi, and A.W. Kim-Khenkina, “Vibration treatment of metal parts,” Chemical and Petroleum Engineering, Vol. 27, pp. 48-49, 1991. 【29】 G.C. Luh and R.M. Hwang, “Evaluating the effectiveness of vibratory stress relief by a modified hole-drilling method,” International Journal of Advanced Manufacturing Technology, Vol. 14, pp. 815-823, 1998. 【30】 D. J. Gifford, “Vibratory stress relief, “Metals Australasia, Vol 16, pp. 10-11, 1984. 【31】 W. Wu, W. H. Hsu, and F. F. Kao, “The Residual Stress Elimination of Nickel 690 Alloy Using Simulaneously Subresonant Vibration Technique,” Nuclear Science, Vol. 33, pp. 190-199. 1996. 【32】 T.E. Hebel, “Reducing stress related problems in steel forgings using sub-harmonic vibrational energy,” ASTM Special Technical Publication, Vol. 1259, pp. 148-159, 1996. 【33】 M. C. Sun, “The vibratory stress relief of a marine shafting of 35# bar steel,” Materials Letters, Vol. 58, pp. 299-303, 2004. 【34】 W. Wu, “Mechanical behavior of vibration-arc-welded alloy 690,” Materials Transactions, Vol. 40, pp. 1456-1460, 1999. 【35】 W. Wu, “Influence of vibration frequency on solidification of weldments,” Scripta Materialia, Vol.42, pp. 661-665, 2000. 【36】 W. Wu, D.Y. Lin, and S.H. Chen, “Mechanical properties of weldment affected by various vibration frequencies,” Journal of Materials Science Letters, Vol. 18, pp. 1829-1831, 1999. 【37】 Metals handbook, Vol. 6, Welding, Brazing, and Soldering, Ninth edition, p. 892. 【38】 B. Wei, “Undirectional Dendritic Solidification Under Longitudinal Resonant Vibration “, Acta metal., Vol. 40, pp. 2739-2751, 1991. 【39】 Showa Aluminium KK, Japan, Kakai Tokkyo Koho, Degassing Met. 8156 770; Chem. Abs. 95 (9), 155045, 1981. 【40】 Af. Claro, Jt. Conrads, Jf. Fava, and Ra. Flinn, “Effect of vibration on solidification of transparent liquids and Al- Si alloys, “ Trans Amer Foundrymen''s Soc, Proc 74th annu meeting, pp. 324-31, 1970. 【41】 T.P. Fisher, “Effects of vibrational energy on the solidification of aluminium alloys,” Br. Foundryman, Vol. 66, pp. 71–83, 1973. 【42】 G.I. Eskin, et al., “Nauchn, Effect of ultrasound treatment of a melt during solidification on the structure and properties of large slabs made from aluminium alloy,” Chem. Abs., Vol.8, pp.74–81, 1982. 【43】 A.N. Abd-El-Azim, “Effect of low-frequency mechanical vibration on the structure of Al–Si eutectic alloy,” Chem. Abs., Vol.12, pp.118–120, 1981. 【44】 N. Z. Pietrowski,and S. Krzepaniecie, “Properties of cast hypoeutectic and eutectic silumins in a permanent mould, an electromagnetic mould and a sand mould, “Chem. Abs., Vol. 12, pp. 304–314,1981. 【45】 R.R. Barbure, I. Hareesha, and K.S.S. Murthy, “Influence of low frequency vibrations on aluminium eutectics,” Br. Foundryman Vol. 72, pp. 35–38, 1979. 【46】 N.R. Pillai, “Effect of low frequency mechanical vibration on structure of modified Al–Si eutectic,” Metall. Trans., Vol. 3, pp. 1313–1316, 1972. 【47】 A.A. Ivanov, G.G. Krushenka, “Preparation of Al–Si alloying composition by means of vibration,” Met. Abs., No. 3, pp. 7-8, 1992. 【48】 D.A. Currey, C.A. Pickles, Dofasco, “Electromagnetic stirring of Al–Si alloys,” J. Mater. Sci., Vol. 23, pp. 3756–3763, 1988. 【49】 G. F. Balatin, and P. Yakovler, Russ. Cast. Prod., p.221, 1964. 【50】 J.A. Weber, and E.W. Rearwin, “Sound waves improve die casting quality,” Foundry, Vol. 19, p. 69, 1961. 【51】 R.S. Richards, W. Rostoker, ASM Trans., Vol. 48, p. 884, 1956. 【52】 F. Kruger, German Patent 604,486,1931. 【53】 Siemens and Halsake Gessellschaft m bH Patent 823,419, 1956. 【54】 Maesiar, Harold, and P. Stanislav, “Ultrasound treatment of aluminium alloy melts in die casting,” Giessereitech, Vol. 31, pp.211–214, 1985. 【55】 G. Jozef, P. Andrej, and S. J. Zez, “Use of vibrations induced by electrodynamic forces in casting aluminum alloys, “ Naut Z. Politech Slaska Mech. Vol. 69, pp. 13–23, 1980. 【56】 Sindo Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, New York, p. 178, 2003. 【57】 Metals Handbook, Vol. 8, 8th Ed., American Society for Metals, 291, 1973. 【58】 S.A. David, J.M. Vitek and D.J. Alexander, “Embrittlement of austenitic stainless steel welds,” Journal of Nondestructive Evaluation, Vol. 15, pp. 129-136, 1996. 【59】 B.R. Raghunatha, K.R Prasad and L.J.K. Iyer, “Effect of chemical composition and ferrite content on room temperature SCC behavior of austenitic weld metals, “ Corrosion, Vol. 49, pp. 248-255, 1993. 【60】 S.L. Mannan and M.D. Mathew, “Creep of austenitic stainless steel welds “Bulletin of Materials Science, Vol. 19, pp. 985-1007, 1996. 【61】 K.N. Krishnan and K.P. Rao, “Effect of post weld heat treatment on microstructural changes and ferrite content in austenitic weld metals “Praktische Metallographie, Vol. 27, pp. 524-532, 1990. 【62】 M.G. Pujar, R.K. Dayal, T.P.S. Gill, and S.N. Malhotra, “Role of delta-ferrite in the dissolution of passive films on the austenitic stainless-steel weld metals,” Journal of Materials Science Letters, Vol. 18, pp. 823-826, 1999. 【63】 N. Suutala, T. Takalo and T. Moisio, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol.11A, pp. 717-725, 1980. 【64】 J. A. Brooks, J. C. Williams, and A. W. Thompson, “Stem analysis of primary austenite solidified stainless steel welds, “Metall. Trans., Vol. 14A, pp. 23-31, 1983. 【65】 J. A. Brooks, J. C. Williams, and A. W. Thompson, “Microstructual origin of the skeletal ferrite morphology of austenitic stainless steel welds, “Metall. Trans., Vol. 14A, pp. 1271-1281, 1983. 【66】 S. Katayama, T. Fujimoto, and A. Matsunawa, “Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals,” Trans JWRI (Join Weld Res Inst Osaka Univ), Vol. 14, pp. 123-137, 1985. 【67】 J. C. Lippoid and W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments EM DASH 2. The Effect of Alloy Composition on Ferrite Morphology” Welding Journal, Vol. 59, pp. 48s-58s, 1980. 【68】 V. Kujanpaa, N. Suutala, T. Takalo and T. Moisio, “Solidification Cracking in Dash Estimation of The Susceptibility of Austenitic and Austenitic-Ferritic Stainless Steel Welds,” Metal Construction, Vol.12, pp.282-285, 1980. 【69】 P. Bilmes, A. Gonzalez, C. Llorente and M. Solari, “Effect of δ ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints,” Welding International, Vol. 10, pp.797-808, 1996. 【70】 J. W. Elmer, S. M. Allen and T. W. Eagar, “Microstructure Development during Solidification of Stainless Steel Alloys,” Metallurgical Transactions A, Vol.20A, pp. 2117-2131, 1989. 【71】 K. P. Rao, “Effect of Weld Cooling Rate on Delta-Ferrite Content of Austenitic Weld Metals,” Journal of Materials Science Letters, Vol.9, pp.675-677, 1990. 【72】 Inconel 690, Huntington Alloys, Inc., 1980. 【73】 陳永璋,陳建銘,”鎳基合金之特性與其銲接方法,”銲接與切割,第10卷,第3期,2000. 【74】 B. D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison Wesley, London, pp. 285-292, 1978. 【75】 M. E. Hilley, J. A. Larson, C. F. Jatczak and R. E. Richlefs, editors. Residual Stress Measurement by X-ray Diffraction, SAE Information Report J784a (1971) pp. 19-24. 【76】 P. S. Prevéy: Metals Handbook Ninth Edition, Vol. 10, ed. K. Mills, Am. Soc. For Met., Metals Park, Ohio, pp 380-392, 1986. 【77】 E. Folkhard: Welding Metallurgy of Stainless Steels, Springer-Verlag, Wien, pp. 63-70, 1984. 【78】 E. Beraha and B. Shpigler, Color Metallography, American Society for Metals, Metals Park, Ohio, 1977. 【79】 G. F. Vander Voort: Metallography: Principles and Practice, McGraw-Hill Book Co., New York, 1984. 【80】 G.L. Kehl and M. Metlay, “The Mechanism of Metallographic Etching,” Journal of the Electrochemical Society, Vol. 101, pp. 124-127, 1954. 【81】 E. Beraha “Metallographic Reagents Based on Sulfide Films,” Praktische Metallographie, Vol. 7, pp. 242-248, 1970. 【82】 E. Beraha, “Metallographic Reagents Based on Molybdate Solutions,” Praktische Metallographie, Vol. 11, pp. 271-27, 1974. 【83】 Robert E. Reed-Hill: Physical Metallurgy Principles, 3rd ed., PWS., Boston, pp. 103-107, 1994. 【84】 B. Chalmers: Trans. A.I.M.E. 200 (1954) 519-532.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10294-
dc.description.abstract本論文研究振動銲接特性與其機構,實驗採用AISI 304與Inconel 690兩種材料進行振動銲接。 因AISI 304在冷卻過程中會發生固態相變化,因此AISI 304用來研究振動銲接的特性。使用氬銲製程。實驗發現振動銲接造成細緻的δ-ferrite結構、均勻的成分分佈、較低的殘留應力與δ-ferrite含量。振動銲接的成核數量比無振盪高出許多,約3.5倍,會使δ-ferrite晶粒細化。此外因為δ→γ屬於擴散型相變化,δ-ferrite細化後擁有較大的表面積,結果在同樣的冷卻條件下可以減少一半的殘留δ-ferrite含量。成分的差異由EDS分析與彩色腐蝕的顏色分佈可以發現,振動銲接的試片擁有相對均勻的成分分佈。殘留應力方面,無振盪為262MPa,同步振盪銲接殘留應力降低到206MPa。 再經由比對銲接後進行應力消除的試片,其共同的特徵是X-ray繞射峰半高寬增大,排除應力與晶粒大小的影響後可以確認是疊差密度提高。整合文獻的發現推測,振動應力消除是因為完整差排分解為部分差排而降低殘留應力,這個機構可以解釋絕大部分振動應力消除發生的現象。 Inconel 690由於其凝固過程直接從液態凝固成為γ沃斯田鐵相,就不再發生相變化,可以保留振動凝固的組織,適合用來研究振動銲接的凝固機構。使用點銲與擺弧銲接來研究振動銲接的凝固機構,實驗發現沿著[001]振盪會導致液態原子析出在樹狀晶(dendrite)的(001)上,並沿著[001]快速成長,而當沿著[010]則導致大量的核析出在樹狀晶(010)上,形成大量且密集的第二枝臂(secondary dendrite arm),而這樣大量成核的結果導致細小的組織。另一方面擺弧銲接的結果顯示,無振盪的銲道晶粒因為磊晶成長在熔融線的前後晶粒的方向是連續成長的,而振動銲接在熔融線的前後晶粒的方向卻僅有平行振動方向能夠穿越熔融線,這個結果說明,振動銲接會造成銲道晶粒選擇性的成長,允許晶粒在振動同方向上的成長,而抑制垂直振動方向的成長,但振動銲接熔融線前後水平成長的晶粒並無延續方向成長,而在熔融線之後形成新的成長方向,所以在X-ray繞射的圖形上有3個明顯的繞射峰,而無振盪卻僅有一個。 這整個研究說明振動銲接不一定造成結構紊亂,事實上振動銲接會造成凝固組織有選擇方向性的凝固,當晶粒已經開始成長凝固時,振動並不能夠改變晶粒成長方向,而是在熔融後再凝固時才能形成新的方向。zh_TW
dc.description.abstractThis study investigates the characteristic and mechanisms of vibration welding. Two material AISI 304 and Inconel 690 were used for vibration welding. AISI 304 represents the material which phase transformation occurs during solidifying to room temperature. AISI 304 was welded by GTAW to investigate the characteristics. The vibration weld shows a very small δ-ferrite structure, uniform composition distribution, less residual stress (from 262 to 206 MPa) and less δ-ferrite content relative to the weld without vibration. These results illustrate that the vibration increased the quantity of nucleation for about times 3.5 and the amount of δ-ferrite caused a grain refined structure. The fine structure offers a great surface for the diffusion phase transformation of δ→γ which reduce half content of δ-ferrite. Compare the samples of vibration welding and vibrate after welding, vibration-induced stacking faults are identified as the major cause of the line broadening of X-ray diffraction profile. Correlating the literature and the result in the study, the mechanism of vibratory stress relief can be represented as the breakdown of dislocation into a pair of partial dislocations. This mechanism can comprehensively explain all the phenomena that take place during vibratory stress relief. To evaluate the crystal growth characteristics of vibration welding, Inconel 690 were welded when subjected to spot and arc oscillation with vibrations. Its primary γ-phase solidifies from the liquid state and cools to room temperature without any other phase transformation. Therefore, the solidifying structure will be completely retained for follow-up investigation. Results shows, if vibrated vertically, the vibration direction follow [001], and finally, the atoms will fit into the (001) plane and growth quickly. However, when the vibrations are along [001], the (010) planes receive liquid atoms and grow and they appear as highly concentrated secondary dendrite arms. Base on the highly concentrated secondary dendrite arms, it performs a grain refinement structure. On the other hand, the results of arc oscillation vibration illustrate that vibration in selected direction transmits to weld pool and excitates it in the same direction. The observation of the microstructure of the welds indicates that if the grain growth direction is parallel to the vibration direction, the grain can continue epitaxial grow and maintain its orientation. On the contrary, if the grain growth orientation is perpendicular to the vibration direction, the growth will be restrained, and the grain will cease its growth at the edge of the fusion line. Hence, new grains and orientations are formed after the second pass welding. This is the reason why vibration welding has the more preferred orientation over vibrationless welding. The study interprets that vibration welding not always create a chaos structure certainly, actually, it selected direction transmits to solidify the grain structure. While grain growth starts, vibration can not change grain growth direction but start forming new growth directions from fusion line.en_US
dc.description.tableofcontents摘要 I Abstract III 總目錄 VI 圖目錄 VIII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2-1 振盪理論 3 2-1.1 振動消除應力理論 3 2-1.2 振動應力消除機構 6 2-2 振動銲接 9 2-3 AISI 304沃斯田鐵系不銹鋼銲接 16 2-4 鎳基690合金 20 2-5 影響X-ray繞射峰形狀的因素 21 2-6 X-ray繞射測量應力 23 三 實驗步驟 25 3-1 AISI 304振動銲接 28 3-1.1 δ-ferrite觀察、成分與含量測量 30 3-1.2 殘留應力測量 31 3-1.3 AISI 304 晶體結構分析 32 3-2 Inconel 690垂直/水平振動銲接 33 3-2.1 Inconel 690垂直/水平振動銲接 34 3-2.2 Inconel 690振動擺弧銲接 35 3-2.3 波形對振動銲接的晶體結構影響 36 3-2.4 Inconel 690 晶體結構分析 37 第四章 結果與討論 39 4-1 AISI 304不銹鋼銲道結構 39 4-2 振動銲接對AISI 304不銹鋼銲道的成分分佈影響 42 4-3 δ-ferrite含量變化 44 4-4 殘留應力與應力消除機構探討 46 4-5 振動對晶體結構影響 53 4-5.1點銲—垂直/水平振動方向對晶體成長的影響 54 4-5.2 Inconel 690擺弧銲接-不同振動方向對晶體成長的影響 64 4-6 振幅波形的影響 69 第五章 結論 73 第六章 參考文獻 75 著作 83zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200614475100en_US
dc.subjectAISI 304en_US
dc.subjectAISI 304zh_TW
dc.subjectInconel 690en_US
dc.subjectVibratory stress reliefen_US
dc.subjectVibration weldingen_US
dc.subjectResidual stressen_US
dc.subjectInconel 690zh_TW
dc.subject振動應力消除zh_TW
dc.subject振動銲接zh_TW
dc.subject殘留應力zh_TW
dc.titleCharacteristics and Mechanisms of Simultaneous Vibration Weldingen_US
dc.title同步震動銲接之特性與機構研究zh_TW
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.