Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10300
標題: 鈷矽化物/矽異質結構奈米線陣列製備及性質之研究
Fabrication of Co-silicide / Si heterostructure nanowire arrays and its properties
作者: Chen, Kuan-Hsun
陳冠勳
關鍵字: silicon nanowire arrays
矽奈米線陣列
cobalt silicide
field emission
鈷矽化物
場發射
出版社: 材料科學與工程學系所
引用: [1-1]H.W.Deckman, J. H. Dunsmuir,“Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [1-2] J. C. Hulteen, R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces ”, J.Vac. Sci. Technol. A 13 (1995) 1553. [1-3]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [1-4]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [1-5] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [1-6]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [1-7]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [1-8]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [1-9]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [1-10]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal-semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [1-11]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [1-12]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”,Chem. Mater. 20 (2008) 2429. [1-13]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [1-14]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [1-15]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-1]M. J. Huang, C. R. Yang, Y. C. Chiou, R. T. Lee, “Fabrication of nanoporous antireflection surfaces on silicon”, Solar Energy Mat. & Solar Cells 92 (2008) 1352. [2-2]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-3]A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks”, Small 4 (2005) 439. [2-4] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers”, Nano lett. 6 (2006) 2375. [2-5]K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, S. T. Lee,“Ordered silicon nanowire arrays via nanosphere lithography and Metal-induced etching”, Appl. Phys. Lett. 90 (2007) 163123. [2-6]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J. H. Yoshimura, K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183. [2-7]R. Micheletto, H. Fukuda, M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional,Ordered Array of Small Latex Particles”, Langmuir 11 (1995) 3333. [2-8]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [2-9]P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [2-10]A.S.Dimitrov, K. Nagayama,“Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces”, Langmuir 12 (1996) 1303. [2-11]H. W. Deckman, J. H. Dunsmuir, “Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [2-12]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface”, Macromol. Chem. Phys. 210 (2009) 230. [2-13]A.Plettl, F. Enderle, M.Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography”, Adv. Funct. Mater. 19 (2009) 3279. [2-14]W. Li, W. Zhao, P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E 41 (2009) 1600. [2-15]C. Cong, W. C. Junus, Z. Shen, T. Yu, “New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching”, Nanoscale Res. Lett. 10 (2009) 11671. [2-16]Y. Cui, Z. Zhong, D.Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [2-17]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose, S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [2-18]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [2-19]R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechansim Of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89. [2-20]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee,“Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B 58 (1998) R16024. [2-21]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z.H. Xi, S. W. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224. [2-22]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [2-23]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [2-24]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [2-25]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [2-26]K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater. 13 (2003) 127. [2-27]K.Peng, A. Lu, R. Zhang, S.T. Lee,“Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Adv. Funct. Mater. 18 (2008) 3026. [2-28]O. Fellahi, T. Hadjersia, M. Maamache, S. Bouanika, A. Manseri,“Effect of temperature and silicon resistivity on the elaboration of Silicon nanowires by electroless etching”, Appl. Sur. Sci. 257 (2010) 591. [2-29] A. Lauwers , P. Besser, T. Gutt, A. Satta, M. d. Potter, R. Lindsay, N. Roelandts, F. Loosen , S. Jin , H. Bender , M. Stucchi , C. Vrancken , B. Deweerdt , K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Eng. 50 (2000) 103. [2-30]S. P. Maruarka,“Silicide for VLSI Applications”, 1983, Academic ress, New York. [2-31]C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex,“CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19. [2-32]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal-semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [2-33]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [4-1]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [4-2] P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [4-3]J. Yu, Q. Yan, D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water Interface”, Appl. Mater. Interfaces 2 (2010) 1922. [4-4]Y. Xia, B. Gates, Y. Yin, Y. Lu, “Monodispersed colloidal spheres :old materials with new applications”, Adv. Mater. 12 (2000) 693. [4-5]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J.H. Yoshimura, K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 8 (1992) 3183. [4-6]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayamat,“Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface”, J. Colloid Interface Sci. 151 (1992) 79. [4-7]A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching-adding flexibility to colloid lithography”, Adv. Funct. Mater. 19 (2009) 3279. [4-8] H. Fang, Y. Wu, J. Zhao, J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768. [4-9] S. L. Cheng, C. H. Chung, H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrayson (001)Si substrates”, J. Electrochem. Soc. 155 (2008) D711. [4-10]C. M. Comrie, R. T. Newman, “Dominant diffusing species during cobalt silicide formation”, J. Appl. Phys. 79 (1996) 153. [4-11]R. H. Fowler, L. Nordheim,“Electron emission in intense electric fields”, Proc. R. Soc. London Ser. A 119 (1928) 173. [4-12]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [4-13]H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl. Phys. 105 (1977) 4729. [4-14]W. Zheng, Y. Wu, H. Shiraiwa, M. T. Ramsbey, T. Kamal, “Memory device having high work function gate and method of erasing same”, US Patent 6912163 B2 (2005). [4-15]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”, Chem. Mater. 20 (2008) 2429. [4-16]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [4-17]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603.
摘要: Recently, one-dimensional metal silicide nanostructures have been extensively studied, because it can be applied to electronic and optoelectronic devices, such as schottky-barrier field effect transistors and field emission devices. In this study, free-standing SiNW arrays were fabricated by the combining nanosphere lithography with metal-assisted catalytic etching. Then, cobllt silicide/Si heterostructure NW arrays were formed by a glancing angle deposition technique and a solid-phase reaction. The effects of annealing temperature of SiNWs on the formation of cobalt silicide/Si heterostructure NWs were investigated. In addition, the emission and electrical properties of the heterostructure NWs were examined. The results show that the widths of the SiNWs were in the range of 170–190 nm. The activation energy for the formation of SiNWs, was 0.26 eV. After annealing at 500℃, the Co2Si phase with small grain size were formed in the front-end of SiNWs. After annealing at 600 and 700℃, polycrystalline Co2Si and CoSi phases coexisted in the front-end of SiNWs. The reaction rate for cobalt silicide formation increased with increasing temperature. On the other hand, the porous structure was formed in the front-end of SiNW because Si atoms is a dominant diffusing species during cobalt silicide formation. The cobalt silicide/Si heterostructure NWs formed by annealing at 500℃ has the lowest turn-on field, was 0.53 V/μm.
URI: http://hdl.handle.net/11455/10300
其他識別: U0005-2508201109361700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508201109361700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.