Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10306
標題: 不同製程參數對以電漿輔助化學氣相沉積法製備氟化非晶質碳膜性質之影響
Effects of process parameters on the properties of fluorinated amorphous carbon films prepared by plasma enhanced chemical vapor deposition
作者: Chiou, Sheng-Che
邱聖哲
關鍵字: Plasma enhanced chemical vapor deposition
電漿輔助化學氣相沉積
Fluorinated amorphous carbon
Hydrophobic
Microstructure
氟化非晶質碳
疏水性
微結構
出版社: 材料科學與工程學系所
引用: 參考資料 [1] J. Robertson, “Diamond-like amorphous carbon.” Mater. Sci. Eng. R-Rep 37 (2002) pp. 129-281. [2] W. S. Choi, K. Kim, J. Yi, and B. Hong, “Diamond-like carbon protective anti-reflection coating for Si solar cell.” Mater. Lett. 62 (2008) pp. 577–580. [3] J. Robertson, “Improving the properties of diamond-like carbon.” Diam. Relat. Mat. 12 (2003) pp. 79-84. [4] J. Robertson, “Requirements of ultrathin carbon coatings for magnetic storage technology.” Tribol. Int. 36 (2003) pp. 405-415. [5] K. Y. Lee, K. Fujimoto, S. Ohkura, S. Honda, M. Katayama, T. Hirao, and K. Oura, “Study of electron field emission and structural properties of nanostructured carbon thin films deposited by hot-filament-assisted reactive sputtering using methane gas.” Vacuum 66 (2002) pp. 239-243. [6] W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, Mihail Ionescu, and Hala Zreiqat, “DLC coatings: Effects of physical and chemical properties on biological response.” Biomaterials 28 (2007) pp. 1620-1628. [7] G. Dearnaley and J. H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review.” Surf. Coat. Technol. 200 (2005) pp. 2518-2524. [8] X. J. Su, Q. Zhao, S. Wang, and A. Bendavid, “Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion.” Surf. Coat. Technol. 204 (2010) pp. 2454–2458. [9] M. Grischke, A. Hieke, F. Morgenweck, and H. Dimigen, “Variation of the wettability of DLC-coatings by network modification using silicon and oxygen.” Diam. Relat. Mat. 7 (1998) pp. 454-458. [10] N. P. Barradas, R. U. A. Khan, J. V. Anguita, S. R. P. Silva, U. Kreissig, R. Grötzschel, and W. Möller. “Growth and characterisation of amorphous carbon films doped with nitrogen.” Nucl. Instr. Meth. Phys. Res. B 161-163 (2000) pp. 969-974. [11] M. Rusop, T. Soga, and T. Jimbo, “Photovoltaic characteristics of phosphorus-doped amorphous carbon films grown by r.f. plasma-enhanced CVD.” Sol. Energy Mater. Sol. Cells 90 (2006) pp. 3214–3222. [12] A. Liu, H. Wu, J. Zhu, J. Han, and L. Niu, “Evolution of compressive stress and electrical conductivity of tetrahedral amorphous carbon films with phosphorus incorporation.” Diam. Relat. Mat. 17 (2008) pp. 1927–1932. [13] J. Meneve, R. Jacobs, L. Eersels, J. Smeets, and E. Dekempeneer, “Friction and wear behavior of amorphous hydrogenated Si1-xCx films.” Surf. Coat. Technol. 62 (1993) pp. 5775-5782. [14] M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, “Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings.” Surf. Coat. Technol. 74-75 (1995) pp. 739-745. [15] M. Hakovirta, R. Verda, X. M. He, and M. Nastasi, “Heat resistance of fluorinated diamond-like carbon films.” Diam. Relat. Mat. 10 (2001) pp. 1486-1490. [16] P. Peng, X. D. Li, G. F. Yuan, W. Q. She, F. Cao, D. M. Yang, Y. Zhuo, J. Liao, S. L. Yang, and M.J. Yue, “Aluminum oxide/amorphous carbon coatings on carbon fibers, prepared by pyrolysis of an organic–inorganic hybrid precursor.” Mater. Lett. 47 (2001) pp. 171–177. [17] G. Y. Chen, J. S. Chen, Z. Sun, Y. J. Li, S. P. Lau, B. K. Tay, and J. W. Chai, “Field emission properties and surface structure of nickel containing amorphous carbon.” Appl. Surf. Sci. 180 (2001) pp. 185-190. [18] V. I. Ivanov-Omskii, L. K. Panina, and S. G. Yastrebov, “Amorphous hydrogenated carbon doped with copper as antifungal protective coating.” Carbon 38 (2000) pp. 495–499. [19] Y. B. Zhang, S. P. Lau, L. Huang, and B. K. Tay “Carbon nanotubes grown on cobalt-containing amorphous carbon composite films.” Diam. Relat. Mat. 15 (2006) pp. 171–175. [20] J. Robertson, “Amorphous carbon.” Adv. Phys. 35 (1986) pp. 317-374. [21] W. Jacob and W. Möller, “On the structure of thin hydrocarbon films.” Appl. Phys. Lett. 63 (1993) pp. 1771-1773. [22] C. De Martino, F. Demichelis, and A. Tagliaferro, “Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis.” Diam. Relat. Mat. 4 (1995) pp. 1210-1215. [23] S. Aisrnberg and R. Chabot, “Ion-Beam Deposition of Thin Films of Diamondlike Carbon.” J. Appl. Phys. 42 (1971) pp. 2953-2958. [24] L. Holland and S. M. Ojha, “Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma.” Thin Solid Films 38 (1976) pp. L17-L19. [25] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S. R. P. Silva, “Stress-induced formation of high-density amorphous carbon thin films.” J. Appl. Phys. 82 (1997) pp. 6024-6030. [26] J. V. Anguita, S. R. P. Silva, and W. Young “Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films.” J. Appl. Phys. 88 (2000) pp. 5175-5179. [27] R. C. Barklie, “Characterisation of defects in amorphous carbon by electron paramagnetic resonance.” Diam. Relat. Mat. 10 (2001) pp. 174-181. [28] R. U. A. Khan, S. R. P. Silva, “Switching phenomena in boron-implanted amorphous carbon films.” Diam. Relat. Mat. 10 (2001) pp. 1036-1039. [29] R. U. A. Khan, J. D. Carey, S. R. P. Silva, B. J. Jones, and R. C. Barklie, “Electron delocalization in amorphous carbon by ion implantation.” Phys. Rev. B 63 (2001) pp. 121201-121204. [30] J. W. Zou, K. Schmidt, K. Reichelt, and B. Dischler, “The properties of a-C:H films deposited by plasma decomposition of C2H2.”J. Appl. Phys. 67 (1990) pp. 487-494. [31] T. Schwarz-Selinger, A. von Keudell, and W. Jacob “Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties.” J. Appl. Phys. 86 (1999) pp. 3988-3997. [32] K. H. Lai, C. Y. Chan, M. K. Fung, I. Bello, C. S. Lee, and S. T. Lee “Mechanical properties of DLC films prepared in acetylene and methane plasmas using electron cyclotron resonance microwave plasma chemical vapor deposition.” Diam. Relat. Mat. 10 (2001) pp. 1862-1867. [33] R. d’Agostino, F. Cramarossa, V. Colaprico, and R. d’Ettole, “Mechanisms of etching and polymerization in radiofrequency discharges of CF4–H2, CF4–C2F4, C2F6–H2, C3F8–H2.” J. Appl. Phys. 54 (1995) pp. 1284-1288. [34] K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics.” J. Appl. Phys. 78 (1995) pp. 15-17. [35] S. J. Limb, C. B. Labelle, and K. K. Gleason, “Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition.” Appl. Phys. Lett. 68 (1996) pp. 13-15. [36] T. Saito, T. Hasebe, S. Yohena, Y. Matsuoka, A. Kamijoc, K. Takahashi, and T. Suzuki, “Antithrombogenicity of fluorinated diamond-like carbon films.” Diam. Relat. Mat. 14 (2005) pp. 1116-1119. [37] T. Hasebe, S. Nagashima, A. Kamijo, T. Yoshimura, T. Ishimaru, Y. Yoshimoto, S. Yohena, H. Kodama, A. Hotta, K. Takahashi, and T. Suzuki, “Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC.” Thin Solid Films 516 (2007) pp. 299-303. [38] G. Cunge and J. P. Booth, “CF2 production and loss mechanisms in fluorocarbon discharges: Fluorine-poor conditions and polymerization.” J. Appl. Phys. 85 (1999) pp. 3952-3959. [39] K. Teshima, H. Sugimura, Y. Inoue, O .Takai, and A. Takano, “Ultra-Water-Repellent Poly(ethylene terephthalate) Substrates.” Langmuir 19 (2003) pp. 10624-10627. [40] A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir 16 (2000) pp. 7044-7047. [41] M. Hakovirta, X. M. He, and M. Nastasi, “Optical properties of fluorinated diamond-like carbon films produced by pulsed glow discharge plasma immersion ion processing.” J. Appl. Phys. 88 (2000) pp. 1456-1459. [42] R. S. Butter, D. R. Waterman, A. H. Lettington, R. T. Ramos, and E. J. Fordham “Production and wetting properties of fluorinated diamond-like carbon coatings.” Thin Solid Films 311 (1997) pp. 107–113. [43] Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, and H. Yan, “Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity.” Appl. Surf. Sci. 253 (2006) pp. 2690-2694. [44] Q. Zhao, Y. Liu, and E. W. Abel, “Effect of temperature on the surface free energy of amorphous carbon films.” J. Colloid Interface Sci. 280 (2004) pp. 174-183. [45] D. Banerjee, S. Mukherjee, and K. K. Chattopadhyay, “Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films” Carbon 48 (2010) pp. 1025-1031. [46] A. Lamperti and P. M. Ossi, “Systematic study of amorphous hydrogenated and fluorinated carbon films.” Appl. Surf. Sci. 205 (2003) pp. 113-120. [47] A. Bendavid, P. J. Martin, L. Randeniya, and M. S. Amin, ”The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition.” Diam. Relat. Mat. 18 (2009) pp. 66-71. [48] L. G. Jacobsohn, M. E. H. Maia da Costa, V. J. Trava-Airoldi, and F. L. Freire Jr, “Hard amorphous carbon–fluorine films deposited by PECVD using C2H2–CF4 gas mixtures as precursor atmospheres.” Diam. Relat. Mat. 12 (2003) pp. 2037-2041. [49] C. E. Bottani, A. Lamperti, L. Nobili, and P. M. Ossi, “Structure and mechanical properties of PACVD fluorinated amorphous carbon films.” Thin Solid Films 433 (2003) pp. 149-154. [50] A. Bendavid, P. J. Martin, L. Randeniya, M. S. Amin, and R. Rohanizadeh, “The properties of fluorine-containing diamond-like carbon films prepared by pulsed DC plasma-activated chemical vapour deposition.” Diam. Relat. Mat. 19 (2010) pp. 1466-1471. [51] G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, “Properties of fluorinated amorphous diamond like carbon films by PECVD.” Appl. Surf. Sci. 219 (2003) pp. 228-237. [52] D. K. Sarkar, M. Farzaneh, and R. W. Paynter, “Wetting and superhydrophobic properties of PECVD grown hydrocarbon andfluorinated-hydrocarbon coatings.” Appl. Surf. Sci. 256 (2010) pp. 3698-3701. [53] G. Chen, J. Zhang, and S. Yang, “Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route.” Electrochem. Commun. 10 (2008) pp. 7-11. [54] J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma.” Thin Solid Films 374 (2000) pp. 103-108. [55] Z. Ning, S. Cheng, and S. Yang, “Influence of thermal annealing on bonding structure and dielectric properties of fluorinated amorphous carbon film.” Curr. Appl. Phys. 2 (2002) pp. 439–443. [56] F. R. Marciano, D. A. Lima-Oliveira, N. S. Da-Silva, E. J. Corat, and V. J. Trava-Airoldi, “Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD.” Surf. Coat. Technol. 204 (2010) pp. 2986–2990. [57] A. Bendavid, P. J. Martin, C. Comte, E. W. Preston, A. J. Haq, F. S. Magdon Ismail, and R. K. Singh, “The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition.” Diam. Relat. Mat. 16 (2007) pp. 1616–1622. [58] C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A reviewof experiments and methods.” Spectroc. Acta Pt. B-Atom. Spectr. 63 (2008) pp. 893–916. [59] A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE Press, New York, 1994. [60] Eric C. Le Ru and Pablo G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Wellington, New Zealand, 2009. [61] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, “Raman spectroscopy on amorphous carbon films.” J. Appl. Phys. 80 (1996) pp. 440-447. [62] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon.” Phys. Rev. B 61 (2000) pp. 14095-14107. [63] Y. Kawashima and G. Katagiri, “Fundamentals, overtones, and combinations in the Raman spectrum of graphite.” Phys. Rev. B 52 (1995) pp. 10053–10059 [64] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, “Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study.” Phys. Rev. B 73 (2006) pp. 125427-125438. [65] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite.” Phys. Rev. Lett. 85 (2000) pp. 5214–5217. [66] L. G. Cançado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “Influence of the Atomic Structure on the Raman Spectra of Graphite Edges.” Phys. Rev. Lett. 93 (2004) pp. 247401-247404. [67] 汪建民, 材料分析, 中國材料科學學會 (1998)。 [68] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, United States of America, 1992. [69] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds, New Jersey, 2005. [70] T. Young, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. London, 95 (1805) pp. 65-87. [71] F. M. Fowkes, “Attractive forces at interfaces.” Ind. Eng. Chem. 56 (1964) pp. 40-52. [72] D. K. Owens and E. I. du Pont de Nemours, “Estimation of the Surface Free Energy of Polymers.” J. Appl. Polym. Sci. 13 (1969) pp. 1741-1747. [73] X. B. Yan, T. Xu, S. S. Yue, H. W. Liu, Q. J. Xue, and S. R. Yang, “Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor.” Diam. Relat. Mat. 14 (2005) pp. 1342– 1347. [74] M. J. Chiang and M. H. Hon, “Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation.” Thin Solid Films 516 (2008) pp. 4765–4770. [75] M. Miyake, A. Ogino, and M. Nagatsu, “Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma.” Thin Solid Films 515 (2007) pp. 4258–4261. [76] S. F. Durrant, R. P. Mota, and M. A. Bica de Moraes, “Relationships between the plasma environment and the composition and optical properties of plasma-polymerized thin films produced in rf discharges of C2H2-SF6 mixtures.” J. Appl. Phys. 71 (1992) pp. 448-455. [77] G. Cicalaa, P. Brunob, A. M. Losaccoc, and G. Mattei, “Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures.” Surf. Coat. Technol. 180–181 (2004) pp. 222–226. [78] M. Horie. “Plasma-structure dependence of the growth mechanism of plasma polymerized fluorocarbon films with residual radicals.” J. Vac. Sci. Technol. A 13 (1995) pp. 2490-2497. [79] C. Huang, C. H. Pan, and C. H. Liu, “Deposition of hydrophobic nano-coatings with low-pressure radio frequency CH2F2/Ar plasma processing.” Thin Solid Films 518 (2010) pp. 3570–3574. [80] L. D. B. Kiss, J. P. Nicolai, W. T. Conner, and H. H. Sawin, “CF and CF2 actinometry in a CF4 Ar plasma.” J. Appl. Phys. 71 (1992) pp. 3186-3192. [81] J. H. Min, S. W. Hwang, G. R. Lee, and S. H. Moon, “Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. II. Effects of source power and bias voltage in a CF4 plasma.” J. Vac. Sci. Technol. B 21 (2003) pp. 1203-1209. [82] M. Ishihara, M. Suzuki, T. Watanabe, T. Nakamura, A. Tanaka, and Y. Koga, “Synthesis and characterization of fluorinated amorphous carbon films by reactive magnetron sputtering.” Diam. Relat. Mat. 14 (2005) pp. 989-993. [83] T. Oh, C. K. Choi, and K. M. Lee, “Investigation of a-C:F films as hydrogenated diamond-like carbon and low-k materials.” Thin Solid Films 475 (2005) pp. 109– 112. [84] J. W. Yia, Y. H. Lee, B. Farouk, “Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma.” Thin Solid Films 374 (2000) pp. 103-108. [85] Y. Xin, Z. Q. Gan, L. Fang, Z. Y. Ning, F. G. Zheng, and S. H. Cheng, “Structural evolution of a-C:F:H film prepared by microwave ECR CVD.” Surf. Coat. Technol. 149 (2002) pp. 89–94. [86] G. Q. Yu, B. K. Tay, and Z. Sun, “Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition.” Surf. Coat. Technol. 191 (2005) pp. 236– 241. [87] K. P. Huang and P. Lin, amd H. C. Shih, “Structures and properties of fluorinated amorphous carbon films.” J. Appl. Phys. 96 (2004) pp. 354-360. [88] Sk. F. Ahmed, D. Banerjee, K. K. Chattopadhyay, “The influence of fluorine doping on the optical properties of diamond-like carbon thin films.” Vacuum 84 (2010) pp. 837–842. [89] R. d’Agostino, F. Cramarossa, F. Fracassi, E. Desimoni, L. Sabbatini, P. G. Zambonin, and G. Caporiccio, “Polymer film formation in C2F6-H2 discharges.” Thin Solid Films 143 (1986) pp. 163-175. [90] C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, “Optical gap of fluorinated amorphous carbon films prepared by electron cyclotron resonance trifluromethane and benzene plasmas.” Diam. Relat. Mat. 13 (2004) p. 191–197. [91] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium.” Phys. status solidi, B 15 (1966) pp. 627-637. [92] J. Robertson and E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon.” Phys. Rev. B 35 (1987) pp. 2946–2957. [93] J. Robertson, “Electronic processes in hydrogenated amorphous carbon.” J. Non-Cryst. Solids 198-200 (1996) pp. 615-618. [94] Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon.” J. Appl. Phys. 80 (1996) pp. 2998-3003. [95] R. d''Agostino, R. Lamendola, P. Favia, and Alix Giquel, “Fluorinated diamondlike carbon films deposited from radio-frequency glow discharge in a triode reactor.” J. Vac. Sci. Technol. A 12 (1994) pp. 308-313. [96] Z. Q. Yao, P. Yang, N. Huang, H. Sun, and J. Wang, “Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII–D).” Appl. Surf. Sci. 230 (2004) pp. 172–178. [97] R. N. Wenzel, “Resistance of solid surfaces to wetting by water.” Ind. Eng. Chem. 28 (1936) pp. 988-994. [98] S. Adachi, T. Arai, and K. Kobayashi, “Chemical treatment effect of Si(111) surfaces in F-based aqueous solutions.” J. Appl. Phys. 80 (1996) pp. 5422-5426. [99] D. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, “Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films.” Diam. Relat. Mat. 11 (2002) pp. 845–850. [100] J. S. Chen, S. P. Lau, Z. Sun, G. Y. Chen, Y. J. Li, B. K. Tay, and J. W. Chai, “Metal-containing amorphous carbon films for hydrophobic application.” Thin Solid Films 398 (2001) pp. 110-115.
摘要: 本文主要是以電漿輔助化學氣相沉積法製備氟化非晶質碳膜(a-C:F),並探討a-C:F碳膜性質之影響。以六氟乙烷(C2F6)、乙炔(C2H2)以及氬氣(Ar)做為前驅氣體。工作壓力、基板溫度以及射頻功率分別設定為33.3 Pa、293 K(20℃)以及100 W。此外,將C2H2以及(C2F6+Ar)之流量分別固定為10 sccm與10 sccm, 而C2F6/(C2F6+Ar)比例分別為0、20、40、60、80與100 %。實驗結果顯示,當C2F6/(C2F6+Ar)比例由0 %增加至100 %時,沉積速率會由111 nm/min增加至215 nm/min。當C2F6/(C2F6+Ar)比例由0 %增加至20 %時,C-C以及C-Hx鍵結會轉變為C-F鍵結。然而,當C2F6/(C2F6+Ar)比例由20 %增加至100 %時,C-F鍵結會轉變為C-F2以及C-F3鍵結。當C2F6/(C2F6+Ar)比例由0 %增加至100%時,光學能隙值會從0.84 eV上升至2.39 eV,水接觸角度會由61°增加至90°,不過表面能會從45.0 mN/m下降至20.6 mN/m。結果指出當C2F6加入至C2H2中,a-C:F薄膜會轉變為類高分子結構且變得更加具有疏水性。 當C2F6/(C2F6+Ar)比例為100 %時,射頻功率從50 W增加至150 W時,碳膜的沉積速率從159 nm/min增加至230 nm/min;碳膜結構中的C-Fx鍵結會增加,而光學能隙值會從2.25 eV上升至2.56 eV。此外,當射頻功率從150 W增加至250 W時,碳膜的沉積速率從230 nm/min減少至90 nm/min;碳膜結構中的C-Fx鍵結會減少而F2C=C鍵結會增加。光學能隙值從2.56 eV下降至2.00 eV,碳膜結構會趨向類石墨化結構。當C2F6/(C2F6+Ar)比例為100 %時,工作壓力從33.3 Pa增加至66.7 Pa時,電漿中的氣體自由平均路徑變小,導致結構較為無序化。而在工作壓力為66.7 Pa時,碳膜具有一最大水接觸角度102.3°,這個結果指出碳膜會趨向於疏水性質。
The properties of fluorinated amorphous carbon (a-C:F) films prepared by plasma enhanced chemical vapor deposition (PECVD) method are investigated. Hexafluorethane (C2F6), acetylene (C2H2), and argon (Ar) were used as the precursor gases. The mass flow rate of C2H2 and (C2F6+Ar) are fixed at 10 and 10 sccm, respectively. Additionally, the working pressure, substrate temperature, and radio-frequency power were 33.3 Pa, 293 K, and 100 W, respectively. Six kinds of (a-C:F) films were prepared with the C2F6/(C2F6+Ar) ratio of 0, 20, 40, 60, 80, and 100 %. Experimental results show that the deposition rate of a-C:F films increases from 111 to 215 nm/min as the C2F6/(C2F6+Ar) ratio increases from 0 to 100 %. When the C2F6/(C2F6+Ar) ratio increases from 0 to 20 %, the C-C and C-Hx bonds are mainly changed to the C-F bonds. Nevertheless, when the C2F6/(C2F6+Ar) ratio increases from 20 to 100 %, the C-F bonds are changed to the C-F2 and C-F3 bonds. When the C2F6/(C2F6+Ar) ratio increases from 0 to 100 %, the optical band gap increases from 0.84 to 2.39 eV and the water contact angle increases from 61 to 90 degrees, but the surface free energy reduces from 45.0 to 20.6 mN/m. This result indicates that as C2F6 is added in C2H2, a-C:F films are shifting to polymer-like and become hydrophobic. As the C2F6/(C2F6+Ar) ratio is 100 %, the radio-frequency power increases from 50 to 150 W, the deposition rate of carbon films increases from 159 to 230 nm/min; the C-Fx bonds in the carbon films increase, and the energy band gap increases from 2.25 to 2.56 eV. Alternatively, as the radio-frequency power increases from 150 to 250 W, the deposition rate of carbon films decreases from 230 to 90 nm/min; the C-Fx bonds in the carbon films decrease, while the F2C=C bonds increase. The e energy band gap decreases from 2.56 to 2.00 eV, and the carbon films structure shifts to graphite-like. As the C2F6/(C2F6+Ar) ratio is 100 %, the working pressure increases from 33.3 to 66.7 Pa, the free path of plasmas gas decreases, and thus, the ordered degree of carbon films structure decreases. When the working pressure is 66.7 Pa, the carbon film has a maximum water contact angle of 102.3 degree, and thus the carbon film become hydrophobic.
URI: http://hdl.handle.net/11455/10306
其他識別: U0005-2606201120213100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606201120213100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.