Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10306
DC FieldValueLanguage
dc.contributor楊聰仁zh_TW
dc.contributorTsong-Jen Yangen_US
dc.contributor林宏謙zh_TW
dc.contributorHung-Chien Linen_US
dc.contributor.advisorSham-Tsong Shiueen_US
dc.contributor.advisor薛顯宗zh_TW
dc.contributor.authorChiou, Sheng-Cheen_US
dc.contributor.author邱聖哲zh_TW
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:44:45Z-
dc.date.available2014-06-06T06:44:45Z-
dc.identifierU0005-2606201120213100zh_TW
dc.identifier.citation參考資料 [1] J. Robertson, “Diamond-like amorphous carbon.” Mater. Sci. Eng. R-Rep 37 (2002) pp. 129-281. [2] W. S. Choi, K. Kim, J. Yi, and B. Hong, “Diamond-like carbon protective anti-reflection coating for Si solar cell.” Mater. Lett. 62 (2008) pp. 577–580. [3] J. Robertson, “Improving the properties of diamond-like carbon.” Diam. Relat. Mat. 12 (2003) pp. 79-84. [4] J. Robertson, “Requirements of ultrathin carbon coatings for magnetic storage technology.” Tribol. Int. 36 (2003) pp. 405-415. [5] K. Y. Lee, K. Fujimoto, S. Ohkura, S. Honda, M. Katayama, T. Hirao, and K. Oura, “Study of electron field emission and structural properties of nanostructured carbon thin films deposited by hot-filament-assisted reactive sputtering using methane gas.” Vacuum 66 (2002) pp. 239-243. [6] W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, Mihail Ionescu, and Hala Zreiqat, “DLC coatings: Effects of physical and chemical properties on biological response.” Biomaterials 28 (2007) pp. 1620-1628. [7] G. Dearnaley and J. H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review.” Surf. Coat. Technol. 200 (2005) pp. 2518-2524. [8] X. J. Su, Q. Zhao, S. Wang, and A. Bendavid, “Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion.” Surf. Coat. Technol. 204 (2010) pp. 2454–2458. [9] M. Grischke, A. Hieke, F. Morgenweck, and H. Dimigen, “Variation of the wettability of DLC-coatings by network modification using silicon and oxygen.” Diam. Relat. Mat. 7 (1998) pp. 454-458. [10] N. P. Barradas, R. U. A. Khan, J. V. Anguita, S. R. P. Silva, U. Kreissig, R. Grötzschel, and W. Möller. “Growth and characterisation of amorphous carbon films doped with nitrogen.” Nucl. Instr. Meth. Phys. Res. B 161-163 (2000) pp. 969-974. [11] M. Rusop, T. Soga, and T. Jimbo, “Photovoltaic characteristics of phosphorus-doped amorphous carbon films grown by r.f. plasma-enhanced CVD.” Sol. Energy Mater. Sol. Cells 90 (2006) pp. 3214–3222. [12] A. Liu, H. Wu, J. Zhu, J. Han, and L. Niu, “Evolution of compressive stress and electrical conductivity of tetrahedral amorphous carbon films with phosphorus incorporation.” Diam. Relat. Mat. 17 (2008) pp. 1927–1932. [13] J. Meneve, R. Jacobs, L. Eersels, J. Smeets, and E. Dekempeneer, “Friction and wear behavior of amorphous hydrogenated Si1-xCx films.” Surf. Coat. Technol. 62 (1993) pp. 5775-5782. [14] M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, “Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings.” Surf. Coat. Technol. 74-75 (1995) pp. 739-745. [15] M. Hakovirta, R. Verda, X. M. He, and M. Nastasi, “Heat resistance of fluorinated diamond-like carbon films.” Diam. Relat. Mat. 10 (2001) pp. 1486-1490. [16] P. Peng, X. D. Li, G. F. Yuan, W. Q. She, F. Cao, D. M. Yang, Y. Zhuo, J. Liao, S. L. Yang, and M.J. Yue, “Aluminum oxide/amorphous carbon coatings on carbon fibers, prepared by pyrolysis of an organic–inorganic hybrid precursor.” Mater. Lett. 47 (2001) pp. 171–177. [17] G. Y. Chen, J. S. Chen, Z. Sun, Y. J. Li, S. P. Lau, B. K. Tay, and J. W. Chai, “Field emission properties and surface structure of nickel containing amorphous carbon.” Appl. Surf. Sci. 180 (2001) pp. 185-190. [18] V. I. Ivanov-Omskii, L. K. Panina, and S. G. Yastrebov, “Amorphous hydrogenated carbon doped with copper as antifungal protective coating.” Carbon 38 (2000) pp. 495–499. [19] Y. B. Zhang, S. P. Lau, L. Huang, and B. K. Tay “Carbon nanotubes grown on cobalt-containing amorphous carbon composite films.” Diam. Relat. Mat. 15 (2006) pp. 171–175. [20] J. Robertson, “Amorphous carbon.” Adv. Phys. 35 (1986) pp. 317-374. [21] W. Jacob and W. Möller, “On the structure of thin hydrocarbon films.” Appl. Phys. Lett. 63 (1993) pp. 1771-1773. [22] C. De Martino, F. Demichelis, and A. Tagliaferro, “Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis.” Diam. Relat. Mat. 4 (1995) pp. 1210-1215. [23] S. Aisrnberg and R. Chabot, “Ion-Beam Deposition of Thin Films of Diamondlike Carbon.” J. Appl. Phys. 42 (1971) pp. 2953-2958. [24] L. Holland and S. M. Ojha, “Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma.” Thin Solid Films 38 (1976) pp. L17-L19. [25] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S. R. P. Silva, “Stress-induced formation of high-density amorphous carbon thin films.” J. Appl. Phys. 82 (1997) pp. 6024-6030. [26] J. V. Anguita, S. R. P. Silva, and W. Young “Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films.” J. Appl. Phys. 88 (2000) pp. 5175-5179. [27] R. C. Barklie, “Characterisation of defects in amorphous carbon by electron paramagnetic resonance.” Diam. Relat. Mat. 10 (2001) pp. 174-181. [28] R. U. A. Khan, S. R. P. Silva, “Switching phenomena in boron-implanted amorphous carbon films.” Diam. Relat. Mat. 10 (2001) pp. 1036-1039. [29] R. U. A. Khan, J. D. Carey, S. R. P. Silva, B. J. Jones, and R. C. Barklie, “Electron delocalization in amorphous carbon by ion implantation.” Phys. Rev. B 63 (2001) pp. 121201-121204. [30] J. W. Zou, K. Schmidt, K. Reichelt, and B. Dischler, “The properties of a-C:H films deposited by plasma decomposition of C2H2.”J. Appl. Phys. 67 (1990) pp. 487-494. [31] T. Schwarz-Selinger, A. von Keudell, and W. Jacob “Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties.” J. Appl. Phys. 86 (1999) pp. 3988-3997. [32] K. H. Lai, C. Y. Chan, M. K. Fung, I. Bello, C. S. Lee, and S. T. Lee “Mechanical properties of DLC films prepared in acetylene and methane plasmas using electron cyclotron resonance microwave plasma chemical vapor deposition.” Diam. Relat. Mat. 10 (2001) pp. 1862-1867. [33] R. d’Agostino, F. Cramarossa, V. Colaprico, and R. d’Ettole, “Mechanisms of etching and polymerization in radiofrequency discharges of CF4–H2, CF4–C2F4, C2F6–H2, C3F8–H2.” J. Appl. Phys. 54 (1995) pp. 1284-1288. [34] K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics.” J. Appl. Phys. 78 (1995) pp. 15-17. [35] S. J. Limb, C. B. Labelle, and K. K. Gleason, “Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition.” Appl. Phys. Lett. 68 (1996) pp. 13-15. [36] T. Saito, T. Hasebe, S. Yohena, Y. Matsuoka, A. Kamijoc, K. Takahashi, and T. Suzuki, “Antithrombogenicity of fluorinated diamond-like carbon films.” Diam. Relat. Mat. 14 (2005) pp. 1116-1119. [37] T. Hasebe, S. Nagashima, A. Kamijo, T. Yoshimura, T. Ishimaru, Y. Yoshimoto, S. Yohena, H. Kodama, A. Hotta, K. Takahashi, and T. Suzuki, “Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC.” Thin Solid Films 516 (2007) pp. 299-303. [38] G. Cunge and J. P. Booth, “CF2 production and loss mechanisms in fluorocarbon discharges: Fluorine-poor conditions and polymerization.” J. Appl. Phys. 85 (1999) pp. 3952-3959. [39] K. Teshima, H. Sugimura, Y. Inoue, O .Takai, and A. Takano, “Ultra-Water-Repellent Poly(ethylene terephthalate) Substrates.” Langmuir 19 (2003) pp. 10624-10627. [40] A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir 16 (2000) pp. 7044-7047. [41] M. Hakovirta, X. M. He, and M. Nastasi, “Optical properties of fluorinated diamond-like carbon films produced by pulsed glow discharge plasma immersion ion processing.” J. Appl. Phys. 88 (2000) pp. 1456-1459. [42] R. S. Butter, D. R. Waterman, A. H. Lettington, R. T. Ramos, and E. J. Fordham “Production and wetting properties of fluorinated diamond-like carbon coatings.” Thin Solid Films 311 (1997) pp. 107–113. [43] Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, and H. Yan, “Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity.” Appl. Surf. Sci. 253 (2006) pp. 2690-2694. [44] Q. Zhao, Y. Liu, and E. W. Abel, “Effect of temperature on the surface free energy of amorphous carbon films.” J. Colloid Interface Sci. 280 (2004) pp. 174-183. [45] D. Banerjee, S. Mukherjee, and K. K. Chattopadhyay, “Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films” Carbon 48 (2010) pp. 1025-1031. [46] A. Lamperti and P. M. Ossi, “Systematic study of amorphous hydrogenated and fluorinated carbon films.” Appl. Surf. Sci. 205 (2003) pp. 113-120. [47] A. Bendavid, P. J. Martin, L. Randeniya, and M. S. Amin, ”The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition.” Diam. Relat. Mat. 18 (2009) pp. 66-71. [48] L. G. Jacobsohn, M. E. H. Maia da Costa, V. J. Trava-Airoldi, and F. L. Freire Jr, “Hard amorphous carbon–fluorine films deposited by PECVD using C2H2–CF4 gas mixtures as precursor atmospheres.” Diam. Relat. Mat. 12 (2003) pp. 2037-2041. [49] C. E. Bottani, A. Lamperti, L. Nobili, and P. M. Ossi, “Structure and mechanical properties of PACVD fluorinated amorphous carbon films.” Thin Solid Films 433 (2003) pp. 149-154. [50] A. Bendavid, P. J. Martin, L. Randeniya, M. S. Amin, and R. Rohanizadeh, “The properties of fluorine-containing diamond-like carbon films prepared by pulsed DC plasma-activated chemical vapour deposition.” Diam. Relat. Mat. 19 (2010) pp. 1466-1471. [51] G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, “Properties of fluorinated amorphous diamond like carbon films by PECVD.” Appl. Surf. Sci. 219 (2003) pp. 228-237. [52] D. K. Sarkar, M. Farzaneh, and R. W. Paynter, “Wetting and superhydrophobic properties of PECVD grown hydrocarbon andfluorinated-hydrocarbon coatings.” Appl. Surf. Sci. 256 (2010) pp. 3698-3701. [53] G. Chen, J. Zhang, and S. Yang, “Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route.” Electrochem. Commun. 10 (2008) pp. 7-11. [54] J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma.” Thin Solid Films 374 (2000) pp. 103-108. [55] Z. Ning, S. Cheng, and S. Yang, “Influence of thermal annealing on bonding structure and dielectric properties of fluorinated amorphous carbon film.” Curr. Appl. Phys. 2 (2002) pp. 439–443. [56] F. R. Marciano, D. A. Lima-Oliveira, N. S. Da-Silva, E. J. Corat, and V. J. Trava-Airoldi, “Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD.” Surf. Coat. Technol. 204 (2010) pp. 2986–2990. [57] A. Bendavid, P. J. Martin, C. Comte, E. W. Preston, A. J. Haq, F. S. Magdon Ismail, and R. K. Singh, “The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition.” Diam. Relat. Mat. 16 (2007) pp. 1616–1622. [58] C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A reviewof experiments and methods.” Spectroc. Acta Pt. B-Atom. Spectr. 63 (2008) pp. 893–916. [59] A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE Press, New York, 1994. [60] Eric C. Le Ru and Pablo G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Wellington, New Zealand, 2009. [61] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, “Raman spectroscopy on amorphous carbon films.” J. Appl. Phys. 80 (1996) pp. 440-447. [62] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon.” Phys. Rev. B 61 (2000) pp. 14095-14107. [63] Y. Kawashima and G. Katagiri, “Fundamentals, overtones, and combinations in the Raman spectrum of graphite.” Phys. Rev. B 52 (1995) pp. 10053–10059 [64] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, “Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study.” Phys. Rev. B 73 (2006) pp. 125427-125438. [65] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite.” Phys. Rev. Lett. 85 (2000) pp. 5214–5217. [66] L. G. Cançado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “Influence of the Atomic Structure on the Raman Spectra of Graphite Edges.” Phys. Rev. Lett. 93 (2004) pp. 247401-247404. [67] 汪建民, 材料分析, 中國材料科學學會 (1998)。 [68] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, United States of America, 1992. [69] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds, New Jersey, 2005. [70] T. Young, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. London, 95 (1805) pp. 65-87. [71] F. M. Fowkes, “Attractive forces at interfaces.” Ind. Eng. Chem. 56 (1964) pp. 40-52. [72] D. K. Owens and E. I. du Pont de Nemours, “Estimation of the Surface Free Energy of Polymers.” J. Appl. Polym. Sci. 13 (1969) pp. 1741-1747. [73] X. B. Yan, T. Xu, S. S. Yue, H. W. Liu, Q. J. Xue, and S. R. Yang, “Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor.” Diam. Relat. Mat. 14 (2005) pp. 1342– 1347. [74] M. J. Chiang and M. H. Hon, “Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation.” Thin Solid Films 516 (2008) pp. 4765–4770. [75] M. Miyake, A. Ogino, and M. Nagatsu, “Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma.” Thin Solid Films 515 (2007) pp. 4258–4261. [76] S. F. Durrant, R. P. Mota, and M. A. Bica de Moraes, “Relationships between the plasma environment and the composition and optical properties of plasma-polymerized thin films produced in rf discharges of C2H2-SF6 mixtures.” J. Appl. Phys. 71 (1992) pp. 448-455. [77] G. Cicalaa, P. Brunob, A. M. Losaccoc, and G. Mattei, “Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures.” Surf. Coat. Technol. 180–181 (2004) pp. 222–226. [78] M. Horie. “Plasma-structure dependence of the growth mechanism of plasma polymerized fluorocarbon films with residual radicals.” J. Vac. Sci. Technol. A 13 (1995) pp. 2490-2497. [79] C. Huang, C. H. Pan, and C. H. Liu, “Deposition of hydrophobic nano-coatings with low-pressure radio frequency CH2F2/Ar plasma processing.” Thin Solid Films 518 (2010) pp. 3570–3574. [80] L. D. B. Kiss, J. P. Nicolai, W. T. Conner, and H. H. Sawin, “CF and CF2 actinometry in a CF4 Ar plasma.” J. Appl. Phys. 71 (1992) pp. 3186-3192. [81] J. H. Min, S. W. Hwang, G. R. Lee, and S. H. Moon, “Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. II. Effects of source power and bias voltage in a CF4 plasma.” J. Vac. Sci. Technol. B 21 (2003) pp. 1203-1209. [82] M. Ishihara, M. Suzuki, T. Watanabe, T. Nakamura, A. Tanaka, and Y. Koga, “Synthesis and characterization of fluorinated amorphous carbon films by reactive magnetron sputtering.” Diam. Relat. Mat. 14 (2005) pp. 989-993. [83] T. Oh, C. K. Choi, and K. M. Lee, “Investigation of a-C:F films as hydrogenated diamond-like carbon and low-k materials.” Thin Solid Films 475 (2005) pp. 109– 112. [84] J. W. Yia, Y. H. Lee, B. Farouk, “Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma.” Thin Solid Films 374 (2000) pp. 103-108. [85] Y. Xin, Z. Q. Gan, L. Fang, Z. Y. Ning, F. G. Zheng, and S. H. Cheng, “Structural evolution of a-C:F:H film prepared by microwave ECR CVD.” Surf. Coat. Technol. 149 (2002) pp. 89–94. [86] G. Q. Yu, B. K. Tay, and Z. Sun, “Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition.” Surf. Coat. Technol. 191 (2005) pp. 236– 241. [87] K. P. Huang and P. Lin, amd H. C. Shih, “Structures and properties of fluorinated amorphous carbon films.” J. Appl. Phys. 96 (2004) pp. 354-360. [88] Sk. F. Ahmed, D. Banerjee, K. K. Chattopadhyay, “The influence of fluorine doping on the optical properties of diamond-like carbon thin films.” Vacuum 84 (2010) pp. 837–842. [89] R. d’Agostino, F. Cramarossa, F. Fracassi, E. Desimoni, L. Sabbatini, P. G. Zambonin, and G. Caporiccio, “Polymer film formation in C2F6-H2 discharges.” Thin Solid Films 143 (1986) pp. 163-175. [90] C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, “Optical gap of fluorinated amorphous carbon films prepared by electron cyclotron resonance trifluromethane and benzene plasmas.” Diam. Relat. Mat. 13 (2004) p. 191–197. [91] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium.” Phys. status solidi, B 15 (1966) pp. 627-637. [92] J. Robertson and E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon.” Phys. Rev. B 35 (1987) pp. 2946–2957. [93] J. Robertson, “Electronic processes in hydrogenated amorphous carbon.” J. Non-Cryst. Solids 198-200 (1996) pp. 615-618. [94] Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon.” J. Appl. Phys. 80 (1996) pp. 2998-3003. [95] R. d''Agostino, R. Lamendola, P. Favia, and Alix Giquel, “Fluorinated diamondlike carbon films deposited from radio-frequency glow discharge in a triode reactor.” J. Vac. Sci. Technol. A 12 (1994) pp. 308-313. [96] Z. Q. Yao, P. Yang, N. Huang, H. Sun, and J. Wang, “Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII–D).” Appl. Surf. Sci. 230 (2004) pp. 172–178. [97] R. N. Wenzel, “Resistance of solid surfaces to wetting by water.” Ind. Eng. Chem. 28 (1936) pp. 988-994. [98] S. Adachi, T. Arai, and K. Kobayashi, “Chemical treatment effect of Si(111) surfaces in F-based aqueous solutions.” J. Appl. Phys. 80 (1996) pp. 5422-5426. [99] D. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, “Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films.” Diam. Relat. Mat. 11 (2002) pp. 845–850. [100] J. S. Chen, S. P. Lau, Z. Sun, G. Y. Chen, Y. J. Li, B. K. Tay, and J. W. Chai, “Metal-containing amorphous carbon films for hydrophobic application.” Thin Solid Films 398 (2001) pp. 110-115.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10306-
dc.description.abstract本文主要是以電漿輔助化學氣相沉積法製備氟化非晶質碳膜(a-C:F),並探討a-C:F碳膜性質之影響。以六氟乙烷(C2F6)、乙炔(C2H2)以及氬氣(Ar)做為前驅氣體。工作壓力、基板溫度以及射頻功率分別設定為33.3 Pa、293 K(20℃)以及100 W。此外,將C2H2以及(C2F6+Ar)之流量分別固定為10 sccm與10 sccm, 而C2F6/(C2F6+Ar)比例分別為0、20、40、60、80與100 %。實驗結果顯示,當C2F6/(C2F6+Ar)比例由0 %增加至100 %時,沉積速率會由111 nm/min增加至215 nm/min。當C2F6/(C2F6+Ar)比例由0 %增加至20 %時,C-C以及C-Hx鍵結會轉變為C-F鍵結。然而,當C2F6/(C2F6+Ar)比例由20 %增加至100 %時,C-F鍵結會轉變為C-F2以及C-F3鍵結。當C2F6/(C2F6+Ar)比例由0 %增加至100%時,光學能隙值會從0.84 eV上升至2.39 eV,水接觸角度會由61°增加至90°,不過表面能會從45.0 mN/m下降至20.6 mN/m。結果指出當C2F6加入至C2H2中,a-C:F薄膜會轉變為類高分子結構且變得更加具有疏水性。 當C2F6/(C2F6+Ar)比例為100 %時,射頻功率從50 W增加至150 W時,碳膜的沉積速率從159 nm/min增加至230 nm/min;碳膜結構中的C-Fx鍵結會增加,而光學能隙值會從2.25 eV上升至2.56 eV。此外,當射頻功率從150 W增加至250 W時,碳膜的沉積速率從230 nm/min減少至90 nm/min;碳膜結構中的C-Fx鍵結會減少而F2C=C鍵結會增加。光學能隙值從2.56 eV下降至2.00 eV,碳膜結構會趨向類石墨化結構。當C2F6/(C2F6+Ar)比例為100 %時,工作壓力從33.3 Pa增加至66.7 Pa時,電漿中的氣體自由平均路徑變小,導致結構較為無序化。而在工作壓力為66.7 Pa時,碳膜具有一最大水接觸角度102.3°,這個結果指出碳膜會趨向於疏水性質。zh_TW
dc.description.abstractThe properties of fluorinated amorphous carbon (a-C:F) films prepared by plasma enhanced chemical vapor deposition (PECVD) method are investigated. Hexafluorethane (C2F6), acetylene (C2H2), and argon (Ar) were used as the precursor gases. The mass flow rate of C2H2 and (C2F6+Ar) are fixed at 10 and 10 sccm, respectively. Additionally, the working pressure, substrate temperature, and radio-frequency power were 33.3 Pa, 293 K, and 100 W, respectively. Six kinds of (a-C:F) films were prepared with the C2F6/(C2F6+Ar) ratio of 0, 20, 40, 60, 80, and 100 %. Experimental results show that the deposition rate of a-C:F films increases from 111 to 215 nm/min as the C2F6/(C2F6+Ar) ratio increases from 0 to 100 %. When the C2F6/(C2F6+Ar) ratio increases from 0 to 20 %, the C-C and C-Hx bonds are mainly changed to the C-F bonds. Nevertheless, when the C2F6/(C2F6+Ar) ratio increases from 20 to 100 %, the C-F bonds are changed to the C-F2 and C-F3 bonds. When the C2F6/(C2F6+Ar) ratio increases from 0 to 100 %, the optical band gap increases from 0.84 to 2.39 eV and the water contact angle increases from 61 to 90 degrees, but the surface free energy reduces from 45.0 to 20.6 mN/m. This result indicates that as C2F6 is added in C2H2, a-C:F films are shifting to polymer-like and become hydrophobic. As the C2F6/(C2F6+Ar) ratio is 100 %, the radio-frequency power increases from 50 to 150 W, the deposition rate of carbon films increases from 159 to 230 nm/min; the C-Fx bonds in the carbon films increase, and the energy band gap increases from 2.25 to 2.56 eV. Alternatively, as the radio-frequency power increases from 150 to 250 W, the deposition rate of carbon films decreases from 230 to 90 nm/min; the C-Fx bonds in the carbon films decrease, while the F2C=C bonds increase. The e energy band gap decreases from 2.56 to 2.00 eV, and the carbon films structure shifts to graphite-like. As the C2F6/(C2F6+Ar) ratio is 100 %, the working pressure increases from 33.3 to 66.7 Pa, the free path of plasmas gas decreases, and thus, the ordered degree of carbon films structure decreases. When the working pressure is 66.7 Pa, the carbon film has a maximum water contact angle of 102.3 degree, and thus the carbon film become hydrophobic.en_US
dc.description.tableofcontents總目錄 致謝 I 摘要 III Abstract V 總目錄 VII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 非晶質碳膜介紹 2 1-2-1 類鑽碳膜(Diamond-like Amorphous Carbon) 4 1-2-2 類石墨碳膜(Graphite-like Amorphous Carbon) 5 1-2-3 類高分子碳膜(Polymer-like Amorphous Carbon) 5 1-3 不同前驅氣體之氫碳比對非晶質碳膜性質之影響 6 1-4 氟化非晶質碳膜介紹 7 1-4-1 氟化非晶質碳膜之成膜機制 9 1-5 疏水性薄膜介紹 9 1-6 研究動機 11 1-7 論文概要 12 第二章 實驗步驟與儀器原理 13 2-1 試片準備與前處理 14 2-2 氟化非晶質碳膜的製備 16 2-2-1 沉積條件 16 2-2-2 簡介射頻電漿輔助化學氣相沉積系統 20 2-3 碳膜厚度量測 23 2-4 電漿診斷分析[58] 24 2-5 碳膜微觀結構分析 27 2-5-1 拉曼散射光譜儀(Raman Scattering Spectrometer, RSS) 27 2-5-2 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)[67] 30 2-5-3傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)[67,69] 35 2-6 碳膜光學性質量測 37 2-7 碳膜表面特性量測 38 2-7-1 原子力顯微鏡(Atomic Force Microscopy, AFM) 38 2-7-2 接觸角(Contact Angle, CA)量測儀 40 第三章 結果與討論 44 3-1 六氟乙烷比例對非晶質碳膜性質之影響 44 3-1-1電漿診斷分析 44 3-1-2 六氟乙烷比例對於非晶質碳膜沉積速率的影響 48 3-1-3 六氟乙烷比例對於非晶質碳膜微結構的影響 48 (a) 拉曼散射光譜儀 48 (b) 傅立葉轉換紅外光光譜儀 51 (c) X光光電子能譜儀 53 3-1-4 六氟乙烷比例對於非晶質碳膜光學性質的影響 59 3-1-5 六氟乙烷比例對於非晶質碳膜表面性質的影響 62 (a) 原子力顯微鏡 62 (b) 接觸角 65 3-2射頻功率對非晶質碳膜性質之影響 72 3-2-1電漿診斷分析 72 3-2-2射頻功率對於非晶質碳膜沉積速率的影響 75 3-2-3 射頻功率對於非晶質碳膜微結構的影響 77 (a) 拉曼散射光譜儀 77 (b) 傅立葉轉換紅外光光譜儀 79 3-2-4 射頻功率對於非晶質碳膜光學性質的影響 81 3-2-5 射頻功率對於非晶質碳膜表面性質的影響 84 (a) 原子力顯微鏡 84 (b) 接觸角 87 3-3工作壓力對非晶質碳膜性質之影響 89 3-3-1電漿診斷分析 89 3-3-2工作壓力對於非晶質碳膜沉積速率的影響 91 3-3-3 工作壓力對於非晶質碳膜微結構的影響 94 (a) 拉曼散射光譜儀 94 (b) 傅立葉轉換紅外光光譜儀 96 3-3-4 工作壓力對於非晶質碳膜光學性質的影響 98 3-3-5 工作壓力對於非晶質碳膜表面性質的影響 100 (a) 原子力顯微鏡 100 (b) 接觸角 103 第四章 結論 106 第五章 未來工作 109 參考資料 110   圖目錄 圖1-1 sp3、sp2以及sp1混成鍵結示意圖[20]。 2 圖1-2 含氫非晶質碳的三相平衡圖[21]。 4 圖1-3 以PECVD成長含氫非晶質碳膜時,沉積速率對前驅氣體離化能之關係圖[1,30]。 6 圖1-4 不同元素比例非晶質碳膜之水接觸角角度變化[14]。 11 圖2-1 實驗流程圖(不同六氟乙烷/(六氟乙烷+氬氣)比例)。 13 圖2-2 實驗流程圖(不同射頻功率以及工作壓力)。 14 圖2-3 製程中試片放置示意圖。 20 圖2-4 射頻電漿輔助化學氣相沉積系統外觀示意圖。 22 圖2-5 射頻電漿輔助化學氣相沉積系統腔體剖面示意圖。 22 圖2-6 射頻電漿輔助化學氣相沉積系統之反應腔體內部構造示意圖。 23 圖2-7 表面輪廓儀(α-step profile meter)外觀圖。 24 圖2-8 OES儀器外觀圖、光纖以及高速USB 2.0/1.1傳輸線。 25 圖2-9 OES儀器內部結構示意圖[59]。 26 圖2-10 OES儀器裝置圖。 26 圖2-11 (a) D band與(b) G band之振動模式示意圖[62]。 28 圖2-12 拉曼散射光譜儀(Raman Scattering Spectrometer, RSS)外觀圖。 30 圖2-13 原子內部電子被光子擊出之示意圖[63]。 31 圖2-14 光電子激發原理之各能量相關性示意圖。 32 圖2-15 X光光電子能譜儀(X-ray photoelectron spectroscope, XPS)外觀圖。 34 圖2-16 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)外觀圖。 36 圖2-17 紫外-可見光光譜儀(UV-Visible Spectrophotometer, UV/Vis)之外觀圖。 38 圖2-18 原子間作用力與距離的關係。 39 圖2-19 原子力顯微鏡(Atomic Force Microscopy, AFM)之外觀圖。 40 圖2-20 液體與固體表面呈現一接觸角[68]。 42 圖2-21 接觸角(Contact Angle, CA)量測儀之外觀圖。 43 圖3-1 不同C2F6/(C2F6+Ar)比例下,OES光譜圖。 46 圖3-2(a) 不同C2F6/(C2F6+Ar)比例下,電漿活性物種含量變化。(b) 不同C2F6/(C2F6+Ar)比例下,C2、C、CH以及CF2物種含量變化。 47 圖3-3 不同C2F6/(C2F6+Ar)比例下,碳膜沉積速率的變化。 48 圖3-4 不同C2F6/(C2F6+Ar)比例下,碳膜拉曼散射光譜圖。 50 圖3-5 不同C2F6/(C2F6+Ar)比例下,碳膜ωD、ωG、FWHMD、FWHMG以及ID/IG 的變化。 51 圖3-6(a)、(b) 不同C2F6/(C2F6+Ar)比例下,紅外光光譜圖的變化。 52 圖3-7 不同C2F6/(C2F6+Ar)比例下,碳膜的XPS全能譜圖。 53 圖3-8 不同C2F6/(C2F6+Ar)比例下,碳膜F/C比例的變化。 54 圖3-9 不同C2F6/(C2F6+Ar)比例下,(a) 碳膜的C1s軌域圖,(b) 碳膜的F1s軌域圖。 55 圖3-10 不同C2F6/(C2F6+Ar)比例下,(a)碳膜C1s軌域分峰圖,(b) 碳膜F1s軌域分峰圖。 57 圖3-11 不同C2F6/(C2F6+Ar)比例下,碳1s軌域中不同碳原鍵結含量百分比。 58 圖3-12 不同C2F6/(C2F6+Ar)比例下,氟1s軌域中不同碳原子鍵結含量百分比。 58 圖3-13 不同C2F6/(C2F6+Ar)比例下,碳膜光學能隙值的求法。 61 圖3-14 不同C2F6/(C2F6+Ar)比例下,碳膜光學能隙值(E04以及Eg)的變化。 62 圖3-15 不同C2F6/(C2F6+Ar)比例下,碳膜表面粗糙度的變化。 63 圖3-16 不同C2F6/(C2F6+Ar)比例下,碳膜表面形貌之3D立體圖。 64 圖3-17 不同C2F6/(C2F6+Ar)比例下,水接觸角的變化。 67 圖3-18 不同C2F6/(C2F6+Ar)比例下,乙二醇接觸角的變化。 67 圖3-19 不同C2F6/(C2F6+Ar)比例下,甲醯胺接觸角的變化。 68 圖3-20 不同C2F6/(C2F6+Ar)比例下,水接觸角示意圖。 69 圖3-21 不同C2F6/(C2F6+Ar)比例下,碳膜的Rrms與水接觸角的變化。 70 圖3-22 不同C2F6/(C2F6+Ar)比例下,碳膜表面能的變化,(a) 水與乙二醇,(b) 甲醯胺與乙二醇。 71 圖3-23 不同射頻功率下,OES光譜圖。 73 圖3-24(a) 不同射頻功率下,電漿活性物種含量變化。(b) 不同射頻功率下,C2、CH以及CF2物種含量變化。 74 圖3-25 不同射頻功率下,碳膜沉積速率的變化。 76 圖3-26 不同射頻功率下,自身負偏壓的變化。 76 圖3-27 射頻功率1/2次方與自身負偏壓的變化。 77 圖3-28 不同射頻功率下,碳膜拉曼散射光譜圖。 78 圖3-29 不同射頻功率下,碳膜ωD、ωG、FWHMD、FWHMG以及ID/IG 的變化。 79 圖3-30 不同射頻功率下,碳膜紅外光光譜的變化。 80 圖3-31 不同射頻功率下,碳膜紅外光光譜分峰圖。 81 圖3-32 不同射頻功率下,碳膜光學能隙值得求法。 83 圖3-33 不同射頻功率下,碳膜光學能隙值(E04以及Eg)的變化。 84 圖3-34 不同射頻功率下,碳膜表面粗糙度的變化。 85 圖3-35 不同射頻功率下,碳膜表面形貌之3D立體圖。 86 圖3-36 不同射頻功率下,水接觸角的變化。 87 圖3-37 不同射頻功率下,水接觸角示意圖。 88 圖3-38 不同工作壓力下,OES光譜圖。 90 圖3-39(a) 不同工作壓力下,電漿活性物種含量變化。(b) 不同工作壓力下,C2、C、CH以及CF2物種含量變化。 91 圖3-40 不同工作壓力下,碳膜沉積速率的變化。 92 圖3-41 不同工作壓力下,自身負偏壓的變化。 93 圖3-42 射頻功率(-1/2)次方與自身負偏壓的變化。 93 圖3-43 不同工作壓力下,碳膜拉曼散射光譜圖。 95 圖3-44 不同工作壓力下,碳膜ωD、ωG、FWHMD、FWHMG以及ID/IG 的變化。 96 圖3-45 不同工作壓力下,紅外光光譜的變化。 97 圖3-46 不同工作壓力下,碳膜紅外光光譜分峰圖。 98 圖3-47 不同工作壓力下,碳膜光學能隙值得求法。 99 圖3-48 不同工作壓力下,光學能隙值(Eg與E04)的變化。 100 圖3-49 不同工作壓力下,碳膜表面粗糙度的變化。 101 圖3-50 不同工作壓力下,碳膜表面形貌之3D立體圖。 102 圖3-51 不同工作壓力下,水接觸角的變化。 103 圖3-52 不同工作壓力下,水接觸角示意圖。 104 圖3-53 液滴與氟化非晶質碳膜的介面示意圖[53]。 105   表目錄 表1-1 非晶質碳和鑽石、石墨、碳60與聚乙烯材料之主要性質比較[1]。 3 表2-1 以不同六氟乙烷/(六氟乙烷+氬氣)比例的製程參數。 17 表2-2 以不同射頻功率的製程參數。 18 表2-3 以不同工作壓力的製程參數。 19 表2-4 近、中、遠紅外光範圍。 35 表3-1 電漿中活性物種之波長位置[69-76]。 45 表3-2 不同C2F6/(C2F6+Ar)比例下,電漿活性物種含量百分比。 47 表3-3 氟化非晶質碳膜紅外光譜吸收波長和C-F鍵結型態。 52 表3-4 不同C2F6/(C2F6+Ar)比例下,碳膜的F/C比例。 54 表3-5 C1s軌域中不同碳鍵結型態的束縛能。 56 表3-6 F1s軌域中不同碳鍵結型態的束縛能。 56 表3-7 碳1s軌域中不同C2F6/(C2F6+Ar)比例下,鍵結型態的比例。 57 表3-8 氟1s軌域中不同C2F6/(C2F6+Ar)比例下,鍵結型態的比例。 57 表3-9 不同C2F6/(C2F6+Ar)比例下,碳膜的光學能隙值。 61 表3-10 不同C2F6/(C2F6+Ar)比例下,碳膜表面粗糙度之關係。 63 表3-11 純水、乙二醇以及甲醯胺之表面張力數據。 66 表3-12 不同射頻功率下,電漿活性物種含量百分比。 74 表3-13 不同射頻功率下,碳膜C-F以及C-F2鍵結含量變化。 80 表3-14 不同射頻功率下,碳膜的光學能隙值。 83 表3-15 不同射頻功率下,碳膜表面粗糙度之關係。 85 表3-16 不同射頻功率下,水接觸角角度值。 88 表3-17 不同工作壓力下,電漿活性物種含量百分比。 91 表3-18 不同工作壓力下,碳膜C-F以及C-F2鍵結含量變化。 97 表3-19 不同工作壓力下,碳膜的光學能隙值。 100 表3-20 不同工作壓力下,碳膜表面粗糙度之關係。 101 表3-21 不同工作壓力,水接觸角角度值。 104zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606201120213100en_US
dc.subjectPlasma enhanced chemical vapor depositionen_US
dc.subject電漿輔助化學氣相沉積zh_TW
dc.subjectFluorinated amorphous carbonen_US
dc.subjectHydrophobicen_US
dc.subjectMicrostructureen_US
dc.subject氟化非晶質碳zh_TW
dc.subject疏水性zh_TW
dc.subject微結構zh_TW
dc.title不同製程參數對以電漿輔助化學氣相沉積法製備氟化非晶質碳膜性質之影響zh_TW
dc.titleEffects of process parameters on the properties of fluorinated amorphous carbon films prepared by plasma enhanced chemical vapor depositionen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.