Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10327
標題: 應用PIV探討潰壩流撞擊直立方柱前端之馬蹄型渦流特性
A PIV Study of Horseshoe Vortex around an Upright Square Cylinder Subject to a Dam Break Flow
作者: 蘇昱嘉
Su, Yu-Chia
關鍵字: 潰壩流
Dam Break
馬蹄渦
Horseshoe Vortex
出版社: 土木工程學系所
引用: 1. Baker, C. J. (1979). “The laminar horseshoe vortex.” Journal of Fluid Mechanics, 95(2), 347-367. 2. Baker, C. J. (1991). “The oscillation of horseshoe vortex system.” Journal of Fluid Engineering, 133, 489-495. 3. Greco, J. J. (1990). “The flow structure in the vicinity of a cylinder-flat plate junction: flow regimes, preiodicity, and vortex interactions.” MS Thesis, Lehigh University. 4. Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H. J. (1978). “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization.” Journal of Fluid Mechanics, 86, 179-200. 5. Khayyer, A., and Gotoh, H. (2010). “On particle ─ based simulation of a dam break over a wet bed.” Journal of Hydraulic Research, 48(2), 238-249. 6. Lin, C., Chiu, P. H., and Shieh, S. J. (2002). “Characteristics of horseshoe vortex system near a vertical plate ─ base plate juncture,” Experimental Thermal and Fluid Science, 27(1), 25-46. 7. Lin, C., Ho, T. C., and Dey, S. (2008). “Experimental study on the characteristics of steady horseshoe vortex system near the junction of rectangular cylinder and base plate,” Journal of Engineering Mechanics, ASCE, 134(2), 184-197. 8. Ozmen-Cagatay, H., and Kocamanb, S. (2010). “Dam ─ break flows during initial stage using SWE and RANS approaches.” Journal of Hydraulic Research, 48(5), 603-611. 9. Schwind, R. (1962). “The three ─ dimensional boundary layer near a strut.” Gas Turbine Lab. Rep., MIT. 10. Seal, C. V., Smith, C. R., and Rockell, D. (1995). “Quantitative characteristics of a laminar, unsteady necklace vortex system at a rectangular block-flat plate juncture.” Journal of Fluid Mechanics, 286, 117-135. 11. Seal, C. V., Smith, C. R., and Rockell, D. (1997). “Dynamics of vorticity distribution in endwall junctions.” AIAA Journal, 35(6), 1041-1047. 12. Thomas, S. W. (1987). “The unsteady characteristics of laminar juncture flow.” Physics of Fluids, 30(2), 283-285. 13. 蔡銹樺 (1993),「鈍形體馬蹄型渦流行為之探討」,國立成功大學工程科學研究所碩士論文。 14. 葉建忠 (1996),「柱體周邊三維流場之觀測與測量」,國立中興大學土木工程研究所碩士論文。 15. 陳謹偉 (1999),「應用PIV及FLDV於矩形柱體來流端馬蹄形型渦流流場之探討」,國立中興大學土木工程研究所碩士論文,1999。 16. 高明哲 (2000),「應用PIV於直立平板前緣穩定運動狀態馬蹄型渦流系統之特性研究」,國立中興大學土木工程研究所碩士論文。 17. 張育豪 (2004),「急加速啟動之流場中方柱前端馬蹄型渦流流場特性之探討」,國立中興大學土木工程研究所碩士論文。 18. 謝世圳 (2008),「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,國立中興大學土木工程研究所博士論文。 19. 謝承恩 (2012),「於不同水深比之潰壩流流場特性探討」,國立中興大學土木工程研究所碩士論文。
摘要: 本研究利用先進之質點影像測速儀(PIV)系統,佐以懸浮微粒可視化法,於模型寬度為1 ~ 5 cm之條件下,針對方柱於潰壩流流場中速度由零瞬間加速時,其前端馬蹄型渦流隨時間發展的過程及流場型態進行定性的觀察與定量的量測。在依據量測結果對馬蹄型渦流發展過程中主渦渦心位置變化、模型迎水面下降流強度及環流量強度隨無因次時間T ( = t × (g/h0)^0.5,其中T = 0為閘門開啟之時間、T0 = 0為潰壩流剛撞擊方柱之時間)增長之變化情形進行詳細探討。 在馬蹄型渦流發展過程中,發現於模型前緣有氣泡捲入但僅發生於寬度為3 ~ 5 cm之條件下,且當模型寬度增加時,氣泡捲入時間越早。另者,還發現下降流速度剖面型態會與渦流結構不同而有所改變,而馬蹄型渦流各特性參數(主渦渦心位置、下降流、環流量)皆與無因次時間T有關係。在下降流之相似性探討上發現無因次長度參數x/xV ( xV為主渦渦心之位置)相對於無因次速度參數Vd/VdM (VdM為最大下降流速度)進行相關性分析時,可在W = 5 cm之實驗條件下獲得一相似曲線。
The characteristics of horseshoe vortex system near the juncture of the square cylinder were studied experimentally, using particle image velocimetry (PIV) and flow visualization techniques. The structures of horseshoe vortex were observed for a model width ranging from 1 cm to 5 cm. The characteristics of the starting horseshoe vortex system were analyzed, including the position of primary vortex core, down-flow velocity profile and the circulation of primary vortex. The results show that the bubble entrains into the vortex center in front of the model only in the 3-5 cm cases model-width. When the model width increases, the bubble entraining to the vorex center occurs earlier. The results also show that the down-flow velocity profiles are highly affected by the vortex structures. The relationship between flow characteristics and the time after the gate opening is obtained by using regression analysis. The similarity of the position of the down-flow is presented with dimensionless length x/xV and dimensionless velocity Vd/VdM as length and velocity scales.
URI: http://hdl.handle.net/11455/10327
其他識別: U0005-2708201215470600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708201215470600
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.