Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10353
標題: The influence of ion-beam bombardment on structures and magnetic properties of NiFe/(Ni,Fe)O bilayers
離子束轟擊對鎳鐵/鎳鐵氧化物雙層膜之結構與磁性質影響
作者: Wei, Miao-Ru
魏妙茹
關鍵字: NiFe/(Ni,Fe)O bilayers
鎳鐵/鎳鐵氧化物
ion-beam bombardment
離子束轟擊
出版社: 材料科學與工程學系所
引用: [1]W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [3] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [6] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [7] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [8] J. Nogu’es, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [9] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [10]David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [11]金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [12] G.H.Wen, R.K. Zheng, K.K. Fung, X.X. Zhang, J. Magn. Magn. Mater. 270 (2004) 407. [13] A.P. Malozemoff, J. Appl. Phys. 63, 3874(1988). [14] Minshen Tan, Hua-Ching Tong, Swie-in Tan, J.Appl. Phys. 79(8), 15 April 1996. [15] L. Sun, Y. Ding, C. L. Chien, and P. C. Searson, Phys. Rev. B., 64, 184430. [16] T. J. Moran, J. Nogues, D. Lederman, I. K. Schuller, Appl. Phys. Lett. 72, 617 (1998). [17] O. Hellwig, S. Maat, J. B. Kortright, and Eric E. Fullerton, Phys. Rev. B, 65, 144418(2002). [18]A. Baruth, D. J. Keavney, J. D. Burton, K. Janicka, E. Y. Tsymbal, L. Yuan, S. H. Liou, and S. Adenwalla, Phys. Rev. B, 74, 054419(2006). [19] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.,2002. [20] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [21] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett.61 (1998) 2472. [22]R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [23]B. D. Cullitu and S. R. Stock, ”Element of X-Ray Diffraction”. [24]E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc.,1964. [25]T. B. Massalski et al., ”Binary Alloy Phase Diagrams”, ASM International, 1990. [26]J. J. Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology : priciples, deposition, film modification , and synthesis”, Noyes Publication,(1989). [27] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989. [28] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [29] David B. Williams and C. Barry Carter, ”Transmission Electron Microscopy”, Plenum Press, (1996). [30] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, Prentice-Hall, Inc., (2001). [31] 汪健民主編,“材料分析”,中國材料科學學會,1998。 [32] David Jiles, ”Magnetism and Magnetic Materials” , Chapman & Hall, (1991). [33] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [34] N. Fujimaki, H. Tamura, T. Imamura, and S. Hasuo, IEEE transactionson electron device, 35, 2412 (1988). [35] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [36] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook, (2002). [37] Nanosensors公司網站. <http://www.nanosensors.com/ index.html> [38] Digital Instruments公司網站. <http://www.di.com/welcome.html> [39] Y. U. Idzerda, L.H. Tjeng, H.-J. Lin, C. J. Gutierrez, G. Meigs, C.T. Chen, Phys. Rev. B 48, 4144 (1993). [40] C. M. Schneider, Z. Celinski, M. Neuber, C. Wilde, M. Grunze, K. Meinel, J. Kirschner, J. Phys.: Condens. Mater. 6, 1177 (1994). [41] 魏德新,”物理雙月刊”,(2008) [42] M. S. Lund, W. A. A. Macedo, K. Liu, J. Nogues, I. K. Schuller, and C. Leighton, Phys. Rev. B 66, 054422 (2002). [43] M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey, A. Misra, U. Nowak, and K. D. Usadel, Phys. Rev. B 68, 214420 (2003) [44] S. Bruck, J. Sort, V. Baltz, S. Surinach, J. S. Munoz, B. Dieny, M. D. Baro, and J. Nogues, Adv. Mater. 17, 2978 (2005). [45] P. Z. Si, D. Li, J.W. Lee, C. J. Choi, Z.D. Zhang, D. Y. Geng, and E. Bruck, Appl. Phys. Lett 87, 133122 (2005). [46] J. Nogues, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996). [47] P. Miltenyi, M. Gierlins, M. Bamming, G. Guntherodt, J. Nogues, M. Gruyters, C. Leighton, and I. K. Schuller, Appl. Phys. Lett. 75, 2304 (1999). [48] J. Geshev, L. G. Pereira, and V. Skumryev, Phys. Rev. Lett. 100, 039701 (2008). [49] J. Nogues, I.K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203. [50] A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200 (1999) 552. [51] R.L. Stamps, J. Phys. D: Appl. Phys. 33 (2000) R247. [52] M. Kiwi, J. Magn. Magn. Mater. 234 (2001) 584. [53] C. Binek, Springer Tr. Mod. Phys. 196 (2003) 1. [54] H. Moradi, Recent Res. Dev. Phys. 3 (2002) 467. [55] I.K. Schuller, MRS Bull. 29 (2004) 642. [56] J. Nogues, J. Sort, V. Langlais, S. Doppiu, B. Dieny, J.S. Munoz, S. Surinach, M.D. Baro, S. Stoyanov, Y. Zhang, Int. J. Nanotechnol. 2 (2005) 23. [57] R. Coehoorn, in: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, vol. 15, North-Holland, Amterdam, 2003 (Chapter 1). [58] J.F. Bobo, L. Gabillet, M. Bibes, J. Phys.: Condens. Matter 16 (2004) S471. [59] D.E. Burgler, P.A. Grunberg, in: R.Waser (Ed.), Nanoelectronics and Information Technology,Wiley-VCH,Weinheim, 2003 (Chapter 4). [60] C. Leighton, M.R. Fitzsimmons, A. Hoffmann, J. Dura, C.F. Majkrzak, M.S. Lund, I.K. Schuller, Phys. Rev. B 65 (2002) 064403. [61] D.V. Dimitrov, S. Zhang, J.Q. Xiao, G.C. Hadjipanayis, C. Prados, Phys. Rev. B 58 (1998) 2090. [62] S.M. Zhuo, K. Liu, C.L. Chien, J. Appl. Phys. 87 (2000) 6659. [63] M.D. Stiles, R.D. McMichael, Phys. Rev. B 63 (2001) 064405. [64] S. Zhang, D.V. Dimitrov, G.C. Hadjipanayis, J.W. Cai, C.L. Chien, J. Magn. Magn. Mater. 198–199 (1999) 468. [65] R. Skomski, J. Phys.: Condens. Mater 15 (2003) R841. [66] J.I. Martin, J. Nogues, K. Liu, J.L. Vicent, I.K. Schuller, J. Magn. Magn. Mater. 256 (2003) 449. [67] J. Fassbender, D Ravelosona, and Y Samson, J. Phys. D 37, R179 (2004). [68] J. Fassbender and J. McCord, J. Magn. Magn. Mater., in press (2007). [69] M.R. Fitzsimmons, C. Leighton, J. Nogues, A. Hoffmann, K. Liu, C. F. Majkrzak, J. A. Dura, J. R. Groves, R. W. Springer, P. N. Arendt, V. Leiner, H. Lauter, and I. K. Schuller, Phys. Rev. B 65, 134436 (2002). [70] J. Nogues, T. J. Moran, D. Lederman, I. K. Schuller, and K. V. Rao, Phys. Rev. B59, 6984 (1999). [71] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel, Phys. Rev. B 67, 134409 (2003). [72] S. Brems, K. Temst, and C. Van Haesendonck, Phys. Rev. Lett. 99, 067201 (2007). [73] T. J. Moran, J. Nogues, D. Lederman, I. K. Schuller, Appl. Phys. Lett. 72, 617 (1998). [74] C. Prados, E. Pina, A. Hernando, and A. Montone, J. Phys. Condens. Mat. 14, 10063 (2002). [75] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [76] J. Nogues, D. Lederman, T. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 3186 (1996). [77] Y. Ijiri, T. C. Schulthess, J. A. Borchers, P. J. van der Zaag, and R. W. Erwin, Phys. Rev. Lett. 99, 147201 (2007)
摘要: 鎳鐵/鎳鐵氧化物的結構及磁性質在本實驗中已被分析。X光繞射研究結果顯示:鎳鐵薄膜為面心立方結構(晶格常數a~3.55&Aring;),鎳鐵氧化物薄膜為岩鹽結構(a~4.26 &Aring;)。電子顯微鏡研究顯示:多晶之鎳鐵薄膜與鎳鐵氧化物薄膜之晶粒大小約為5~15 nm。 磁性質分析結果顯示:在160K、外加場為12 kOe的場冷條件下可發現到一典型的趨勢,即交換偏壓場強度(Hex)隨鐵磁層厚度降低而增加。此外,交換偏壓場強度(Hex)隨反鐵磁層厚度增加而增加(零場冷或場冷(12 kOe))。此主要由於反鐵磁層與鐵磁層間增強之交換耦合作用所致。改變鐵磁層厚度結果顯示: 反鐵磁層表面經不同氬離子束能量(VEH=0~150 V)轟擊結果顯示:鎳鐵/鎳鐵氧化物雙層薄膜的交換偏壓隨著轟擊電壓的增加而呈現一不尋常的震盪趨勢。轟擊電壓為70V及130V的鎳鐵/鎳鐵氧化物雙層薄膜中於5K下發現存在正的交換偏壓場;而尚未經過轟擊反鐵磁層表面的鎳鐵/鎳鐵氧化物雙層薄膜存在一最大的負交換偏壓值(Hex ~ -290 Oe)。此外也發現到,隨轟擊電壓的上升,矯頑磁力Hc與交換偏壓(Hex)呈現一相反的趨勢。矯頑磁力和交換偏壓與轟擊電壓間的行為主要歸因於經氬離子束轟擊反鐵磁層表面後造成了反鐵磁層表面磁矩的重新排列所造成。 鎳鐵/鎳鐵氧化物雙層薄膜中,旋轉角度與矯頑磁力和交換偏壓間的結果顯示:在零場冷過程中可同時發現正與負的交換偏壓值;而在場冷過程中得到典型的負交換偏壓值,顯示了場冷的效應可維持鐵磁層的單一磁區態。 鐵磁層(NiFe)與反鐵磁層(NiFeO)間交換耦合的現象可經由影像式光電子顯微鏡(PEEM)得到一直接的証實。由影像式光電子顯微鏡可看出:相較於鎳鐵單層膜中較大、平整且無明顯特徵的磁區,當與反鐵磁層接觸後,較為細碎且存在條紋狀的磁區便可被觀測到。 由磁電傳輸性質研究顯示本研究中的鎳鐵/鎳鐵氧化物雙層薄膜存在異相性磁阻的行為。在77K的低溫下,聲子散射的降低造成總磁阻率的上升。而於77K的低溫下最大的總磁阻率(~10%)發生在NiFe(20nm)/(Ni,Fe)O(30nm)雙層膜中。
The structural and magnetic properties of NiFe/(Ni,Fe)O bilayers were investigated. X-ray diffractometry results have shown that the top NiFe layer consisted of a fcc NiCo phase (a= 3.55 &Aring;) whereas the bottom (Ni,Fe)O layer consisted of a rock-salt (Ni,Fe)O (a= 4.26 &Aring;). The grain sizes of these polycrystalline NiFe/(Ni,Fe)O bilayers range from 5 nm to 15 nm, as revealed by Transmission electron microscopy (TEM). A typical 1/tFM dependence of the exchange field, Hex was observed in the NiFe/(Ni,Fe)O (25 nm) bilayers at 160 K under a field-cooling (FC at 12 kOe) process. In addition, the Hex increases with increasing AF (Ni,Fe)O thicknesses in NiFe (20 nm)/(Ni,Fe)O bilayers. This indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. An unusual oscillating exchange bias was found in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (VEH) from 0 to 150 V. The positive exchange field was observed in NiFe/(Ni,Fe)O (VEH = 70 V and 130 V) bilayers whereas a largest negative Hex (~ -290 Oe) was found in unbombarded NiFe/(Ni,Fe)O (VEH= 0V) bilayers at 5 K. Further, the coercivity, Hc, was found to change with VEH in an opposite fashion to Hex. The behavior of Hex and Hc with VEH is attributed to surface reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Angular dependence of NiFe/(Ni,Fe)O bilayers on Hc and Hex have shown that both positive and negative Hex was observed in zero-field-cooling process (ZFC). However, the typical negative Hex was found in the FC process indicating that the role of the cooling field is used to maintain a single FM domain state. Direct evidence of exchange coupling between the AF (Ni,Fe)O and the FM NiFe layer is provided by Photoelectron emission microscopy (PEEM). Compared to the large smooth and featureless domains in the NiFe single layer, fine stripe domains was observed when they are in contact with the AF (Ni,Fe)O layer. The magnetotransport studies have shown that these NiFe/(Ni,Fe)O bilayers exhibit the anisotropic magnetoresistance (AMR) behavior. The reduced phonon scattering between NiFe and (Ni,Fe)O layer gives rise to the enhanced total MR ratio at 77K. The maximum total MR ratio (~ 10% at 77 K) was found in NiFe(20nm)/(Ni,Fe)O(30nm) bilayers.
URI: http://hdl.handle.net/11455/10353
其他識別: U0005-2808200615105400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200615105400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.