Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10355
標題: 碳鋼對AISI 303Cu摩擦銲接之硏究
A Study of Friction Welded Between Carbon Steel to AISI 303Cu Joints
作者: 洪秉樺
Hung, Ping-Hua
關鍵字: friction Wwlded
摩擦銲接
carbon steel
astenite stainless steel
碳鋼
沃斯田鐵不銹鋼
出版社: 材料科學與工程學系所
引用: 【1】李隆盛,銲接實習,全華科技圖書公司,第18頁,民國98年。 【2】V.V. Satyanarayana, G. Madhusudhan Reddy, T. Mohandas, “Continuous drive friction welding studies on AISI 304 austenitic stainless steel welds”, Mater. Manuf. Process,communicated 2003. 【3】Mitelea, C.M. Craciunescu ,”Parameter influence on friction welding of dissimilar surface- carburized /volume-hardened alloyed steels,” Materials and Design , Vol. 31 , pp.2181–2186, 2010. 【4】C.R.G Ellis, “Some recent applications of friction welding,” Welding and Metal Fabrication,Vol. 45,No.4, pp.207-211, May, 1977. 【5】林偉邦,盧偉華,曾界彰,”摩擦銲接在鋼筋續接器上的應用”,銲接與切割,第9卷,第3期, 第43-45頁,民國88年。 【6】劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚,工程材料科學,全華科技圖書公司,第632-633頁,民國95年。 【7】A. N. Singh, “Production. Fabrication. Selection of stainless steel,” pp.106-122, 1991. 【8】王憲明,”敏化處理對304型不鏽鋼機械性質之影響”,義守大學材料科學與工程學系,民國94年。 【9】E. Folkhard, Welding Metallury of stainless steels, Spring-Verlag wien, New York, pp.104-105, 1984. 【10】J. F. Lancaster, Metallury of Welding, Georgy Allen and unwin, London, pp.181-182,1980. 【11】Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa, Kazutaka Okamoto, Satoshi Hirano and Masahisa Inagaki, “Corrosion resistance of friction stir welded 304 stainless steel,” Scripta Materialia, Vol. 51, pp. 101–105, 2004. 【12】黃振賢,機械材料,新文京開發出版,第236-245頁,民國96年。 【13】曾銘智,”台灣電弧類電銲設備產業競爭策略之研究”,國立中山大學企業管理學系研究所,民國79年。 【14】李隆盛,銲接實習,全華科技圖書公司,第19-20頁,民國98年。 【15】Faith Reidenbach, ASM handbook; volume 6 : Welding, Brazing, and Solderi,10th Ed, ASM International, pp880, OH, 1993. 【16】K.R. Fitzgerald, ”Friction Welding saves money and metal,” Design News, pp. 30-40, 1979. 【17】Mumin Sahin,”Joining with friction welding of high-speed steel and medium-carbon steel,”Journal of Materials Processing Technology, Vol.168, pp. 202–210,2005. 【18】蘇貴福,新材料的接合技術,全華科技圖書公司,第109-112頁,民國81年。 【19】A.S. Bahrani, B.Crossland, “Solid phase welding process Part 3. Friciton welding, ” Chart. Mech.Eng. pp.61-66 1976. 【20】蘇貴福,新材料的接合技術,全華科技圖書公司,第106頁,民國81年。 【21】林偉邦,”摩擦銲接強度之研究”,國立中山大學材料科學工程研究所,民國77年。 【22】Atsushi HASUI and Takashi MATSUI, “On the Effect of Faying Face Condition on Weldability in Friction Welding,” Transactions of Japan Welding Society, Vol.18,No.1, pp.77-82, 1987. 【23】周 君,秦國梁,張忠信,”摩擦銲在汽車製造業中的應用”,機械工人雜誌社, 第96-99頁,民國92年。 【24】蘇貴福,新材料的接合技術,全華科技圖書公司,第108-109頁,民國81年。 【25】Hidetoshi Fujii, Ling Cui, Nobuhiro Tsuji, Masakatsu Maeda, Kazuhiro Nakata and Kiyoshi Nogi, “Friction stir welding of carbon steels,” Materials Science and Engineering A, Vol. 429, pp. 50–57, 2006. 【26】楊仲霖,”電子束銲接製程參數對690合金與304L不銹鋼異種銲接之影響”, 國立成功大學機械工程研究所,民國91年。 【27】V.V. Satyanarayana , G. Madhusudhan Reddy, T. Mohandas,” Dissimilar metal friction welding of austenitic–ferritic stainless steels”Journal of Materials Processing Technology, Vol. 160 ,pp. 128–137,2005. 【28】V.V. Satyanarayana, G. Madhusudhan Reddy, T. Mohandas, Continuous drive friction welding studies on AISI 304 austenitic stainless steel welds, Mater. Manuf. Process., communicated June 2003.. 【29】曾光宏,”沃斯田鐵不銹鋼熱裂縫、晶界腐蝕及脆裂之形成與防治”,銲接與切割,第8卷,第6期, 第32-35頁,民國87年。 【30】R.A. Lula,“Stainless steel,” American Society for Metals, pp.1-12, 1986. 【31】Young Dong Chung, Hidetoshi Fujii, Yufeng Sun and Hiroyasu Tanigawa, “Interface microstructure evolution of dissimilar friction stir butt welded F82H steel and SUS304,” Materials Science and Engineering A, Vol. 528, pp. 5812–5821, 2011. 【32】綱島正一,”熱處理技術與實務”,財團法人中衛發展中心,第192-194頁,民國92年。 【33】Y.S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara,“Microstructural evolution of ultrahigh carbon steel during friction stir welding,” Scripta Materialia, Vol. 57, pp. 557–560, 2007. 【34】姜志華,蔡金峯,銲接冶金概論,財團法人徐氏基金會,第112-149頁,民國85年。 【35】綱島正一,”熱處理技術與實務”,財團法人中衛發展中心,第205頁,民國92年。 【36】H-J. Bargel and G. Schulze, Werkstoffkunde, VDI-Verlag GmbH, Dusseldorf,pp.184-185,1988. 【37】大和久重雄,S曲線-熱處理恆溫變態曲線,正言出版社,第17-26頁,民國66年。。 【38】金重勳,熱處理,復文書局,第29頁,民國87年。 【39】金重勳,熱處理,復文書局,第545-547頁,民國87年。 【40】J. A. Self, “Effects of Compositions upon the Martensite Transformation Temperature of the Austenitic Steel Welds,” Center for Welding Research, MT-CWR-086-037, Colorado School of Mines, Golden, CO, 1986. 【41】大和久重雄,S曲線-熱處理恆溫變態曲線,正言出版社,第135-137頁,民國66年。 【42】黃振賢,金屬熱處理,文京圖書,第40頁,民國89年。 【43】黃振賢,金屬熱處理,文京圖書,第45頁,民國89年。 【44】Krauss, and George, “Carbon-Dependent Fracture of as-Quenched Martensite, ” Phase Transformations and their Applications in Materials Engineering, Vol.1, pp.37-42, 1998. 【45】Annual Book of ASTM Standards, Standard Test Methods for Tension Testing of Metallic Materials, Vol.03.01,1990. 【46】鍾榮星,”球墨鑄鐵對碳鋼摩擦銲接之研究”,國立中山大學材料科學工程研究所,民國77年。 【47】T.J. Jessop, Friction welding of dissimilar metal combinations—aluminium and stainless steel, Weld Institute Research Report, pp. 73–75,1995. 【48】Faith Reidenbach, ASM handbook; volume 1 : Properties and Selection: Non ferrous Alloys and Special-Materials,10th Ed, ASM International, pp.880, OH, 1990. 【49】林奇鋒,”304L不銹鋼在未預變形及預變形條件下之高速撞擊特性與微觀組織的比較研究”,國立成功大學機械工程學系研究所,民國91年。 【50】徐開鴻,鋼鐵顯微組織與解說,中國電機出版社,第188-189頁,民國68年。 【51】Sindo Kou ,Welding Metallurgy, John Wiley & Sons, Inc. pp.397-398,2003. 【52】金重勳,熱處理,復文書局,第450頁,民國93年。 【53】Sindo Kou ,“Welding Metallurgy”, John Wiley & Sons, Inc. pp.438, 2003. 【54】Sindo Kou ,“Welding Metallurgy”, John Wiley & Sons, Inc. pp.435, 2003.
摘要: 本研究從材料科學方面,對於不同含碳量的碳鋼對接AISI303Cu快削沃斯田鐵系不銹鋼的摩擦銲接接頭之微觀組織及機械性質進行分析研究,許多文獻皆指出碳鋼含碳量愈高,銲接性愈差,而沃斯田鐵系不銹鋼在銲接後常有熱裂及耐腐蝕性降低等現象,本研究乃選用市場常用的不同含碳量的碳鋼對接AISI303Cu快削沃斯田鐵系不銹鋼,使用相同的摩擦銲接參數,實驗中利用各種不同的機械性質測試,討論不同含碳量的碳鋼及AISI303Cu快削沃斯田鐵系不銹鋼在摩擦銲接後對其材料組織及機械性質所造成的影響。 實驗結果顯示各組試片的摩擦銲接接頭,巨觀接合面皆呈現明顯的接合線,沒有觀察到接合面附近有裂痕,銲縫等缺陷。量測各組試片的摩擦銲接接頭的飛邊外徑,碳鋼飛邊外徑為沃斯田鐵不銹鋼飛邊外徑的1.03到1.17倍,量測各組試片的摩擦銲接接頭的熱影響區寬度,碳鋼熱影響區寬度大於沃斯田鐵不銹鋼的熱影響區,為沃斯田鐵不銹鋼的熱影響區的2.6到3.2倍,以上說明碳鋼的熱影響區及飛邊外徑皆大於AISI303Cu沃斯田鐵不銹鋼。 由於摩擦銲接溫度位於敏化現象的溫度範圍,導致303Cu沃斯田鐵不鏽鋼接合面附近的析出許多碳化物,使得接合面的耐蝕性低於303Cu沃斯田鐵不鏽鋼母材。 S15C/303Cu、S45C/303Cu的銲接接頭之破斷面在接合面上,從拉伸試驗破斷面之微觀形貎,觀察到明顯之旋渦狀及片狀斷裂形貌,為摩擦銲接接合面上典型的機構。SK4/303Cu、SK2/303Cu的銲接接頭之破斷面在碳鋼側,從拉伸試驗破斷面之微觀形貎,破斷面無旋渦狀形貎並呈現脆性穿晶破壞,其碳鋼側的硬度分別為HV806(SK4)、HV510(SK2),而303Cu接合面的硬度HV180。 SK4/303Cu的銲接接頭強度,只有碳鋼母材的72%,SK4經成分分析後含有1.492%的鉻元素,鉻元素會增加材料的自硬性,使得SK4在摩擦銲接後,組織變態為淬火麻田散鐵及殘留沃斯田鐵,而淬火麻田散鐵為易碎裂相,形成穿晶破裂形貌,導致SK4/303Cu的銲接接頭強度不佳。 S15C/303Cu與S45C/303Cu其強度分別為碳鋼母材的83%與81%,破斷面形貎皆為延晶破裂,並在接合面上斷裂,碳鋼側之接合面的微觀組織S15C/303Cu為細化肥粒鐵、部份的雪明碳鐵及許多細微的氣孔,S45C/303Cu為延著晶界析出的肥粒鐵及部份的細微波來鐵。 SK2/303Cu其強度為SK2母材的86%,破斷面為穿晶破裂,且其破壞面在SK2側,其接合面微觀組織為延著晶界析出之雪明碳鐵,晶粒內為細微波來鐵,最高硬度為HV510,得知SK2/303Cu的細微波來鐵及晶界析出之雪明碳鐵,可得到較佳的銲接接頭。
This research is focus on using carbon steel with different carbon content to friction weld with free cutting AlSI303 Cu Austenite stainless steel. Microstructure & mechanical analysis on this friction weld will be analyzed using material science. Plenty of research papers claimed that, the welding ability worsen with the increase in carbon content, Austenite stainless steel typically has heat fissure and its' corrosive resistance decreases after weld. This research uses different carbon content steel in market to weld with free cutting Austenite stainless steel. Using same friction welding parameters, as well as utilizing different mechanical properties testing, the research discuss about the impact of material structure & mechanical properties of friction welding between different carbon content and free cutting AlSI303 Cu Austenite stainless steel. Experimental results showed all joints of the friction welding samples have very obvious connecting line. No cracks, weld seam, porosity or other defects were observed near the joints. Flash O.D. (outer diameters) were measured on all samples, and observed that flash O.D. of carbon steel is at 1.03 - 1.17 times of that Austenite stainless steel. The range of HAZ was also measured; the HAZ in carbon steel is larger than Austenite stainless steel, around 2.6 - 3.2 times of Austenite stainless steel. This illustrates the Flash O.D. & HAZ of carbon steel is larger than Austenite stainless steel Because temperature of friction welding is in the temperature range of sensitization, that causes plenty of carbide at the friction weld area of 303Cu Austenite stainless steel. Therefore the friction weld area is less corrosive resistant than the base matel of 303Cu Austenite stainless steel. By examining the microstructure at the fractured region friction welded joint for S15C / 303Cu, S45C / 303Cu, there are obvious vortex & sheet like cracks on the tensile test specimen. This is a typical structure of frictional welding. For material SK4 / 303Cu, SK2 / 303Cu, fracture region occurred at the side of the carbon steel friction welded joint. Observation on the microstructure of tensile test specimen, shows no vortex like cracks, instead it has transgranular fracture. The measured hardness on the side is HV806 (SK4), HV510 (SK2) respectively. The friction welded joint surface of 303Cu has a hardness of HV180. The tensile strength of SK4 / 303Cu welded joint is only 72% of that base carbon steel material. The material analysis result of SK4 shows 1.492% of chromium. Chromium is responsible for material hardness. This will cause microstructure change into quenched Martensite & Austenite residue after SK4 is being friction welded. Quenched Martensite will cause brittleness, and formed transgranular fracture pattern. Therefore, the welded joint strength of SK4 / 303Cu is not desirable. The tensile strength of S15C / 303Cu and S45C / 303Cu are 83% and 81% of their base matel of carbon steel respectively, failure mode is intergranular fracture, which happened at the friction welded joint. The microstructure of the fracture surface in S15C / 303Cu is fine ferrite, partially cementite and with plenty of micro vacants. For S45C / 303Cu analysis on the grain boundary illustrates ferrite and partially fine pearlite. The tensile strength of SK2 / 303Cu is 86% of its' SK2 base matel, the fracture mode of this material is mainly transgranular fracture, its' fracture surface is on the SK2 side. The friction weld microstructure analysis on grain boundary shows cementite structure, with fine pearlite as the based; its' highest hardness is HV510. The fine pearlite and cementite SK2 / 303Cu has a better quality in welding.
URI: http://hdl.handle.net/11455/10355
其他識別: U0005-2706201212001900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201212001900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.