請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/10394
標題: Cytotoxicity and Cytomechanical Effect of Gold and Silver Nanoparticles on Red blood Cells of Rat
金及銀奈米顆粒對大鼠紅血球細胞毒性及機械性質影響之研究
作者: 謝玉瑩
Shie, Yu-Ying
關鍵字: red blood cells
紅血球
cytotoxicity
mechenical properties
細胞毒性
機械性質
出版社: 材料科學與工程學系所
引用: [1] S. R. K. Vedula, E. Mendoz , W. Sun, T. S. Lim, A. Li, Q. S. Li and C. T. Lim, “Human cell as a structure and machine – an engineering perspective”, The IES Journal Part A: Civil & Structural Engineering, 2 (2009) 153-160. [2] G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials”, Nat. Mater., 2 (2003) 715-725. [3] Textbook of hematology,血液學 第二版 何敏夫,合記出版。 [4] http://smmhc.adam.com/content.aspx?productId=39&pid=1&gid=000534 [5] N. Mohandas and P. G. Gallagher, “Red cell membrane: Past, present, and future”, Blood, 112 (2008) 3939-3948. [6] M. Dao, C. T. Lim and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers”, J. Mech. Phys. Solids, 51 (2003) 2259-2280. [7] V. Bennett, “Spectrin: A structural mediator between diverse plasma membrane proteins and the cytoplasm”, Curr. Opinion Cell Biol., 2, (1990) 51-56. [8] L. H. Miller, D. I. Baruch, K. Marsh and O. K. Doumbo, “The pathogenic basis of malaria”, Nature, 7 (2002) 673-679. [9] N. V. Repin, E. N. Bobrova and S. V. Repina, “Thermally induced transformation of mammalian red blood cells during hyperthermia”, Bioelectrochemistry, 73 (2008) 101-105. [10] C. C. Yao and Z. G. Zha, “Effects of incubation pH on the membrane deformation of a single living human red blood cell”, Curr. Appl. Phys., 7 (2007) 11-14. [11] P. V. Asharani, S. Sethu, S. Vadukumpully, S. P. Zhong, C. T. Lim, M. P. Hande and S. Valiyaveettil, “Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles”, Adv. Funct. Mater., 20 (2010) 1233-1242. [12] D. Wang and S. J. Lippard, “Cellular processing of platinum anticancer drugs”, Nat. Rev. Drug Discov., 4 (2005) 307-320. [13] Z. Chang, H. Fan, K. Zhao, M. Chen, P. He and Y. Fang, “Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes”, Electroanalysis, 20 (2008) 131-136. [14] R. Koch, On bacteriological research, August Hirsch Forest, Berlin, 1890. [15] C. L. Brown, G. Bushell, M. W. Whitehouse, D. S. Agrawal, S. G. Tupe, K. M. Paknikar and E. R. T. Tiekink, Gold Bull., 40 (2007) 245-250. [16] M. Faraday, “Experimental relations of gold (and other metals) to light”, Philos. Trans. R. Soc. London, 147 (1857) 145-181. [17] G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensio ”, Nature, 241 (1973) 20-22. [18] T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution”, Langmuir , 20 (2004) 6414-6420. [19] N. G. Khlebtsov and L. A. Dykman, “The forward and inverse problem in tissue optics based on the radiative transfer equation: A brief review”, J. Quant. Spectrosc. Radiat. Transfer, 111 (2010) 1-35. [20] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and R. Langer, “Nanocarriers as an emerging platform for cancer therapy”, Nat. Nanotechnol., 2 (2007) 751-760. [21] C. Thompson, Alchemy and Alchemists, Dover Publications, Inc., Mineola, NY, 2002. [22] L. N. Magner, A History of Medicine, Informa Healthcare, New York, NY, 2nd edn, 1992. [23] B. S. Atiyeh, M. Costagliola, S. N. Hayek and S. A. Dibo, “Effect of silver on burn wound infection control and healing: Review of the literature”, Burns, 33 (2007) 139-148. [24] P. Dunn, Archives of Disease in Childhood - Fetal and Neonatal Edition, 83 (2000) 158-159. [25] Rodriguez and S. W. Bishnoi, “Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna”, Anal. Bioanal. Chem., 398 (2010) 689-700. [26] S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative”, Appl. Environ. Microbiol., 6 (2007) 1712-1720. [27] J. L. Elechiguerra, J. Burt and J. R. Morones, “Interaction of silver nanoparticles with HIV-1”, J. Nanobiotechnol., 3 (2005) 1-10. [28] K. Chaloupka, Y. Malam and A. M. Seifalian, “Nanosilver as a new generation of nanoproduct in biomedical applications”, Trends Biotechnol., 11 (2010) 580-588. [29] M. Mahmoudi, K. Azadmanesh, M. A. Shokrgozar, W. S. Journeay and S. Laurent, “Effect of nanoparticles on the cell life cycle”, Chem. Rev., 111 (2011) 3407-3432. [30] A. E. Ne, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova and M. Thompson, “Understanding biophysicochemical interactions at the nano-bio interface”, Nat. Mater., 8 (2009) 543-557. [31] M. Horie, H. Fukui, K. Nishio, S. Endoh, H. Kato, K. Fujita, A. Miyauchi, A. Nakamura, M. Shichiri, N. Ishida, S. Kinugasa, Y. Morimoto, E. Niki, Y. Yoshida and H. Iwahashi, “Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro” J. Occup. Health, 53 (2011) 64-74. [32] www.microbiologybytes.com/virology/kalmakoff/baculo/pics/Apoptosis.gif [33] S. Ahn, S. Y. Jung, E. Seo and S. J. Lee, “Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging”, Biomaterials, 32 (2011) 7191-7199. [34] B. D. Chithrani, A. A. Ghazani and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells”, Nano Lett., 6 (2006) 662-668. [35] J. Q. Lin, H. W. Zhang, Z. Chen and Y. G. Zheng, “Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship”, ACS Nano, 9 (2010) 5421-5429. [36] A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud and S. S. Gambhir, “Gold Nanoparticles: A revival in precious metal administration to patients”, Nano Lett., 11 (2011) 4029-4036. [37] W. S. Rapson, “Skin contact with gold and gold alloys”, Contact Dermatitis, 13 (1985) 56-65. [38] B. Merchant, “Gold, the noble metal and the paradoxes of its toxicology”, Biologicals, 26 (1998) 49-59. [39] M. Suwalsky, R. Gonzalez, F. Villena, L. F. Aguilar, C. P. Sotomayor, S. Bolognin and P. Zatta, “Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions”, Biochem. Biophys. Res. Commun., 397 (2010) 226-231. [40] H. J. Yen, S. H. Hsu and C. L. Tsai, “Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes”, Small, 13 (2009) 1553-1561. [41] X. W. Ma, Y. Y. Wu, S. B. Jin, Y. Tian, X. N. Zhang, Y. L. Zhao, L. Yu and X. J. Liang, “Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment”, ACS Nano, 5 (2011) 8629-8639. [42] H. Blumberg and T. N. Carey, JAMA, J. Am. Med. Assoc., 103 (1934) 1521-1524. [43] J. L. Tang, L. Xiong, S. Wang, J. Y. Wang, L. Liu, J. G. Li, Z. Y. Wan and T. F. Xi, “Influence of silver nanoparticles on neurons and blood–brain barrier via subcutaneous injection in rats”, Appl. Surf. Sci., 255 (2008) 502-504. [44] M. Ahamed, M. S. AlSalhi and M. K. J. Siddiqui, “Silver nanoparticle applications and human health”, Clin. Chim. Acta, 411 (2010) 1841-1848. [45] D. He, A. M. Jones, S. Garg, A. N. Pham and T. David Waite, “Silver nanoparticle-reactive oxygen species interactions: Application of a charging-discharging model”, J. Phys. Chem. C, 115 (2011) 5461-5468. [46] D. Das and G. Ahmed, “Silver nanoparticles damage yeast cell wall”, Int. Res. J. Biotechnol., 3 (2012) 37-39. [47] P. V. AshaRani, G. L. K. Mun, M. P. Hande and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells”, ACS Nano, 3 (2009) 279-290. [48] C. Carlson, S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones and J. J. Schlager, “Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species”, J. Phys. Chem. B, 4 (2008) 13608-13619. [49] Y. N. Zhao, X. X. Sun, G. N. Zhang, B. G. Trewyn, I. I. Slowing and V. S.-Y. Lin, “Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects”, ACS Nano, 5 (2011) 1366-1375. [50] D.E. Brooks and E.A. Evans, “Rheology of blood cells, in: Clinical hemorheology”, S. Chien, J. Dormandy, E. Ernst and A. Matrai, eds, Martinus Nijhoff Publishers, Dordrecht, (1987) 73-96. [51] S. Jayavanth, D. H. Lee and B. C. Pak, “Multi-shape erythrocyte deformability analysis by imaging technique”, J. Mech. Sci. Technol., 24 (2010) 931-935. [52] A. Li, A. H. Mansoor, K. S. Tan and C.T. Lim, “Observations on the internal and surface morphology of malaria infected blood cells using optical and atomic force microscopy”, J. Microbiol. Methods, 66 (2006) 434-439. [53] I. Dulin´ska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz and M. Szymon´ski, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy”, J. Biochem. Biophys. Methods, 66 (2006) 1-11. [54] X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Mater. Charact., 48 (2002) 11-36. [55] B. W. Rossiter and R. C. Bastzold, “Determination of elastic and mechanical properties”, Physical Methods of Chemistry, Second Edition. [56] M. Musielak, “Red blood cell-deformability measurement: Review of techniques”, Clin. Hemorheol. Microcirc., 42 (2009) 47-64. [57] M. Diez-Silva, M. Dao, J. Han, C. T. Lim, and S. Suresh, “Shape and biomechanical characteristics of human red blood cells in health and disease”, MRS. Bulletin., 35 (2012) 382-388. [58] S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky and C. Boritz, “Synthesis and study of silver nanoparticles”, J. Chem. Educ., 2 (2007) 322-325. [59] 陳家全、李家維、楊瑞森「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印,第 23-60 頁。 [60] H. Hertz and J. Reine, “On the contact of rigid elastic solids and on hardness”, Verh Ver Befoderung Gewerbe Fleisses, 61 (1881) 410. [61] R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview”, Langmuir, 21 (2005) 10644-10654. [62] U. Taylor, S. Klein, S. Peterson, W. Kues, S. Barcikowski and D. Rath, “Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles”, Cytometry Part A, 77 (2010) 439-446. [63] T. Wang, J. Bai, X. Jiang and G. U. Nienhaus, “Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry”, ACS Nano, 6 (2012) 1251-1259. [64] Z. Krpetic, F. Porta, E. Caneva, V. Dal Santo and G. Scari, “Phagocytosis of biocompatible gold nanoparticles”, Langmuir, 26 (2010) 14799-14805. [65] C. Brandenberger , C. Mühlfeld , Z. Ali , A. G. Lenz , O. Schmid , W. J. Parak, P. Gehr and B. Rothen-Rutishauser, “Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles”, Small, 6 (2010) 1669-1678. [66] A. Peters, B. Veronesi, L. Calderon-Garciduenas, P. Gehr, L. C. Chen, M. Geiser, W. Reed, B. Rothen-Rutishauer, S. Schurch and H. Schultz, “Translocation and potential neurological effects of fine and ultrafine particles”, Part. Fibre Toxicol., 13 (3) 2006. [67] E. C. Cho, J. Xie, P. A. Wurm and Y. Xia, “Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI Etchant”, Nano Lett., 9 (2009) 1080-1084. [68] M. Balland, “Power law in microrheology experiments on living cells: Comparative analysis and modeling”, Phys. Rev. E, 74 (2006) 1-17. [69] F. Braet, C. Rotsch, E. Wisse, and M. Radmacher, “Comparison of fixed and living liver endothelial cells by atomic force microscopy”, Appl. Phys. A., 66 (1998) 575-578. [70] X. Liu, R. Fernandes, A. Jurisicova, R. F. Casper and Y. Sun, “In situ mechanical characterization of mouse oocytes using a cell holding device”, Lab Chip, 10 (2010) 2154-2161. [71] W. A. Lam, M. J. Rosenbluth, D. A. Fletcher, “Chemotherapy exposure increases leukemia cell stiffness”, Blood, 109 (2007) 3503-3508. [72] L. Chen, R. A. Yokel, B. Hennig and M. Toborek, “Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature”, J. Neuroimmune Pharm., 3 (2008) 286-295. [73] K. Buyukhatipoglu and A. M. Clyne, “Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation”, J. Biomed. Mater. Res. A., 96 (2011) 186-195. [74] X. An and N. Mohandas, “Disorders of red cell membrane”, Br. J. Haematol.,141 (2008) 367-375. [75] Patrick G. Gallagher, “Red Cell Membrane Disorders”, Hematology, 1 (2005) 13-18.
摘要: 紅血球 (Red Blood Cell, Erythrocyte) 在人體中扮演相當重要的角色,其主要功能為運送氧氣與二氧化碳。而奈米顆粒則具有特殊的物理化學性質,常作為生物感測、藥物載體和抗癌藥物等生醫方面的應用,釐清金及銀奈米顆粒對紅血球之內噬作用、細胞毒性與機械性質影響為一重要課題。因此本研究採用不同濃度之金及銀奈米顆粒與大鼠紅血球作用不同時間,再透過光學顯微鏡及掃描式電子顯微鏡觀察奈米顆粒對紅血球形貌及微結構的影響;並以穿透式電子顯微鏡觀察紅血球微結構以及金及銀奈米顆粒進入紅血球之情形;同時,以溶血 (Hemolysis)、凝血 (Hemagglutination) 及脂質過氧化測定 (Lipid Peroxidation) 進行細胞毒性之定性與定量分析;最後以奈米壓痕測試儀之動態機械分析釐清金及銀奈米顆粒對紅血球機械性質之影響。 研究結果發現,正常紅血球為雙凹圓盤狀;而與濃度 50、100、200 μg/ml 的金及銀奈米顆粒作用 2 與 24 小時後,發現隨著濃度與作用時間增加,紅血球形貌逐漸產生棘狀並有血凝和溶血的現象,其溶血百分比與丙二醛 (Malondialdehyde, MDA) 濃度比磷酸鹽緩衝溶液作用高;特別是高濃度銀奈米顆粒對紅血球造成之細胞毒性最為嚴重。經穿透式電子顯微鏡觀察其內噬作用,可看到奈米顆粒確實進入紅血球內。紅血球表層因有細胞骨架支撐,而具較內部高之機械性質;在與奈米顆粒作用 2 小時後,表層之機械性質即大幅上升且黏彈性下降,顯示細胞骨架結構已發生變化。本研究並發現以奈米壓痕測試進行機械特性量測可以比細胞毒性分析更早且清楚判定奈米顆粒對細胞結構之影響。
Erythrocytes (red blood cells, RBCs) play an important role in oxygen and carbon dioxide transport. In another aspect, because of the special physical and chemical properties of nanoparticles (NPs) such as gold (Au) and silver (Ag), and the wide biomedical applications to biosensors, drug delivery carriers and anticancer drugs, it is important to clarify the endocytosis, cytotoxicity and mechanical effects of Au and Ag NPs on RBCs. Thus in this study, exposure studies of rat RBCs to different concentrations (50, 100, 200 μg/mL) of Au and Ag NPs were carried out for different durations (0 to 24 hours). The effects of the NPs on the morphology and microstructure of RBCs were investigated by optical microscopy and scanning electron microscopy; the endocytosis was observed by transmission electron microscopy. The cytotoxicity of Au and Ag NPs in RBCs was qualitatively and quantitatively analyzed via hemolysis, hemagglutination and lipid peroxidation. Moreover, the effects of the NPs on the mechanical properties of RBCs were examined by the dynamic mechanical analysis of nanoindenter. Normal RBCs in a phosphate buffered solution (PBS) appeared to be a biconcave shape. An extended time of exposure to Au and Ag NPs of higher concentrations induced the appearance of RBCs in aberrant morphologies including an echinocyte-like feature, associated with higher hemolysis and hemagglutination percentages and malondialdehyde (MDA) concentrations than those in PBS. In particular, the Ag NPs of the highest concentration caused the severest cytotoxicity in RBCs. The incorporations of Au and Ag NPs into RBCs through endocytosis were verified by transmission electron microscopic observations. Owing to the cytoskeleton support, the surface of RBCs exhibited higher mechanical properties than the interior did. After exposure to the NPs for two hours, the surface mechanical properties of RBCs markedly increased, and viscoelasticity decreased, suggesting the change in cytoskeleton structure. The mechanical analyses by nanoindentations provide much earlier and clearer identification of the effects of NPs on cell structure than cytotoxicity does.
URI: http://hdl.handle.net/11455/10394
其他識別: U0005-2806201219403700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806201219403700
顯示於類別:材料科學與工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。