Please use this identifier to cite or link to this item:
標題: Fabrication of the InGaN micro-square array Light-Emitting Diodes by filling with Ga2O3 buried layer
作者: 林春敏
Lin, Chun-Min
關鍵字: PEC
出版社: 材料科學與工程學系所
引用: 參考文獻 [1] S. Nakamura and G. Fasol, The Blue Laser Diode, (Springer, New York, 1997). [2] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., Appl. Phys. Lett. Vol.70, 2790 (1997). [3] E. Fred Schubert, Light-Emitting Diodes, (Cambridge, United Kingdom,2003). [4] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett. Vol.84, 855 (2004). [5] T. Fujii, A. David, Y.Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch and S. Nakamura,”Cone-shaped surface GaN-based light-emitting diodes”,Phys. Stat. Sol. (2004). [6] Yan GAO, T. Fujii, Rajat Sharma, Kenji Fujito, Steven P. Denbaars,S. Nakamura and Evelyn L. Hu”Roughening Hexagonal Surface Morphology on Laser Lift-Off(LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching.”, J.J. Appl. Phys,Vo;.43,No.5A ,p637,(2004) [7] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, ”Deep ultraviolet wet chemical etching of gallium nitride”, Appl.. Phys. Lett. Vol.72, 939 (1998). [8] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett. Vol.73, 2654 (1998). [9] M. S. Minsky, M. White, and E. L. Hu,” Room-temperature photoenhanced wet etching of GaN”, Appl. Phys. Lett. Vol.68 ,1531 (1996). [10] C. Youtsey and I. Adesida, and G. Bulman,” Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett. Vol.71 ,2151 (1997). [11] C. Youtsey, L. T. Romano, and I. Adesida” Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett. Vol.73 ,797 (1998). [12] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc,” Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett. Vol.77 ,1227 (2000). [13] Hock M. Ng, Nils G. Weimann, and Aref Chowdhury,” GaN nanotip pyramids formed by anisotropic etching”, J. Appl. Phys., Vol.94, 650 (2003). [14] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu,” Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride”, Appl. Phys. Lett. Vol.84 ,3322 (2004). [15] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, ,” Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution”, J. Appl. Phys. Vol.89 ,4142 (2001). [16] Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, “Electrodeless wet etching of GaN assisted with chopped ultraviolet light”, Appl. Phys. Lett. Vol.84 ,3759 (2004). [17] C. Youtsey, L. T. Romano, R. J. Molnar, I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching”, Appl. Phys. Lett. Vol.74 ,3537 (1999). [18] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc¸ and R. J. Molnar,” Dislocation density in GaN determined by photoelectrochemical and hot-wet etching”, Appl. Phys. Lett. Vol.77 ,3532 (2000). [19] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht and P. R. Hageman,” Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN”, J. Appl. Phys., Vol.90, 6105 (2001). [20] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul and S. P. Kilcoyne,” Wet chemical etching of AlN”, Appl. Phys. Lett. Vol.67 ,1119 (1995). [21] C. Youtsey, G. Bulman, and I. Adesida, J. Eleltron. Mater. Vol.27,282 (1998). [22] C. Youtsey, I. Adesida, and G. Bulman, Electron. Lett. Vol.33, 245 (1997). [23] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, ”Development of selective lateral potoelectrochemical etching of InGaN/GaN for lift-off applications”, Appl. Phys. Lett. Vol.78, 1945 (2001). [24] P. Visconti, M. A. Reshchikov, K. M. Jones, D. F. Wang, R. Cingolani, H. Morkoc, R. J. Molnar, and D. J. Smith, J. Vac. Sci. Technol. B 19, 1328 (2001). [25] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu,” Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching”, Appl. Phys. Lett. Vol.85 ,762 (2004). [26] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K. B. Chong, and X. Zhang, “Strong influence of SiO2 thin film on properties of GaN epilayers”, Appl. Phys. Lett. Vol.74, 818 (1999). [27] Yoshitaka Nakano, Takashi Jimbo,” Interface properties of thermally oxidized n-GaN metal–oxide–semiconductor capacitors”, Appl. Phys. Lett. Vol.82, 218 (2003). [28] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee and K. S. Chung, ” GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. Vol.80, 446 (2002). [29] Yoshitaka Nakano and Tetsu Kachi, and Takashi Jimbo,” Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes”, Appl. Phys. Lett. Vol.82, 2443 (2003). [30] Ching-Ting Lee, Hong-Wei Chen and Hsin-Ying Lee,” Metal oxide semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett. Vol.82, 4304 (2003). [31] Choelhwyi Bae, Cristiano Krug, Gerald Lucovsky, Arpan Chakraborty and Umesh Mishra,” Work-function difference between Al and n-GaN from Al-gated n-GaN/nitrided-thin-Ga2O3 /SiO2 metal oxide semiconductor structures”, Appl. Phys. Lett. Vol.84, 5413 (2004). [32] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett. Vol.76, 511 (2000). [33] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken,”Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys. Lett. Vol.76, 3923 (2000). [34] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee,” Bias-assisted photoelectrochemical oxidation of n-GaN in H2O”, Appl. Phys. Lett. Vol.81, 1029 (2002). [35] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, J. S. Yun and K. S. Chung,” Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol.78 ,1309 (2001) [36] D. A. Stocker, E. F. Schubert, and J. M. Redwing, ”Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett. Vol.73,2654 (1998). [37] D. A. Stocker, I. D.Goepfer, E. F. Schubert, K. S. Boutros, and J. M. Redwing,” Crystallographic wet chemical etching of p-type GaN”, Journal of Electrochemical Society,147(2)763-764(2000). [38] D. A. Stocker, E. F. Schubert, K. S. Boutros, and J. M. Redwing, ”Fabrication of smooth GaN-based laser facets”,MRS Internet J. Nitride Semicond. Res. 4S1, G7.5 (1999). [39] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O,Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, ”High-power AlGaInN flip-chip Light-emitting diodes”, Appl. Phys. Lett. Vol.78, 3379-3381 (2001). [40] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu, Cheng-Yen Chen, Chi-Feng Huang, Tsung-Yi Tang, C CYang, Cen-Shawn Wu and Chii-Dong Chen, ”Strain relaxation and quantum confinement in InGaN/GaN nanoposts”, Nanotechnology.17, 1454–1458 (2006). [41] Yuanping Sun and Yong-Hoon Choa, ”High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays”, Appl. Phys. Lett. Vol.87, 093115 (2005). [42] S. X. Jin, J. Li, J. Y. Lin, H. X. Jiang, ”GaN micordisk light emitting diodes” Appl. Phys. Lett., Vol.76, 631-633 (2000). [43] K. S. Lee, C. Huh, J. M. Lee, E. J. Kang, and S. J. parkd, ”Electrical and Optical Characteristics of InGaN/GaN Microdisk LEDs”Electrochemical and Solid-State Letters, 8 (3), G68-G70 (2005). [44] H. W. Choi, M. D. Dawson, P. R. Edwards, R. W. Martin, ”High extraction efficiency InGaN micro-ring light-emitting diodes”, Appl. Phys. Lett., Vol.83, 4483-4485 (2003). [45] T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kuo, Member, IEEE, and S. C. Wang, Senior Member, IEEE,”Enhancement in Light Output of InGaN-Based Microhole Array Light-Emitting Diodes”, IEEE Photo. Tech. Letters Vol.17, NO.6, (2005). [46] 廖清賢,“氮化鎵之光電化學反應與應用”,國立台灣大學光電工程學研究所碩士論文,2000。 [47] S. X. Jin, J. Li, J. Y. Lin, H. X. Jiang, ”InGan/GaN quantum well interconnected micordisk light emitting diodes” Appl. Phys. Lett., Vol.77, 3236-3238 (2000). [48] L. Dai, B. Zhang, J. Y. Lin, H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks”, J. Appl. Phys., Vol.89, 4951-4954 (2001). [49] M. Rebien, W. Henrion, M. Hong and J. P. Mannaerts, M. Fleischer, “Optical properties of gallium oxide thin films”, Appl. Phys. Lett. Vol.81, 250 (2002). [50] M. F. Al-Kuhaili, S. M. A. Durrani and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation”, Appl. Phys. Lett. Vol.83, 4533 (2002). [51] C. H. Chiu1, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands”, Nanotechnology, Vol.18, 445201, (2007).
摘要: In this thesis, we demonstrated that the GaN-based multi-quantum-well (MQW) micro-square arrays light emitting diodes were filled with the Ga2O3 buried layer for the isolation of individual micro-square array. The Ga2O3 layers were formed at the GaN:Si n-type mesa sidewall and the bottom ICP etching surface in LED structure, and the selective wet oxidation was occured through the photoelectrochemical wet oxidation process in H2O solution without p-type GaN:Mg layer. The oxide layer could provide passivation at mesa sidewall to reduce the surface leakage current. The dimension of square widths were 25µm and 15µm defined by the inductively coupled plasma etching and the PEC wet mesa etching processes. The conventional broad-area LEDs are fabricated close to the micro-square array LEDs on the same wafer. The micro-square array LEDs were filled with self-assemble Ga2O3 isolation layer through the photoelectrochemical wet oxidation process in H2O solution, and the Al (350nm) metal layer was deposited as a metal reflection and conductive layer. At 20 mA DC operating current, the 25µm and 15µm micro-square array LEDs have blue-shifted phenomenon about 1 nm(6.23meV) and 2.5nm(15.43meV), and the EL itensity were about 1.41 times and 1.22 times enhancement compared to the conventional BA LED. The reverse leakage currents measured at -10V of 25µm micro-square array LEDs (5.8510-10A) and 15µm micro-square array LEDs (1.3710-10A) had been suppressed lower than the conventional BA LED (1.7910-9A).
在本論文中,我們以實驗驗證微米方形陣列氮化銦鎵/氮化鎵多重量子井結構發光二極體可利用氧化鎵層將每個獨立分離的微米方形陣列氮化鎵發光二極體絕緣,透過在水溶液中的光輔助電化學氧化(photoelectrochemical,PEC)製程在氮化鎵平台側壁及蝕刻n型氮化鎵表面形成氧化鎵層,並觀察到選擇性氧化機制發生在p和n型氮化鎵界面,p型氮化鎵表面並不氧化,氧化鎵層能夠保護平台側壁而減少漏電流。透過乾式電漿蝕刻加上光輔助電化學濕式平台蝕刻兩階段製程,製作出直徑為25µm和15µm的微米方形陣列發光二極體,而傳統的大面積氮化鎵發光二極體就在微米方形陣列氮化銦鎵發光二極體附近,因此這些元件有相似的特性。 在20mA電流下,25µm和15µm的微米方形陣列發光二極體分別較傳統大面積發光二極體藍移大約1nm(6.23meV)和2.5nm(15.43meV),且光取出強度分別增加1.41倍和1.22倍。在反向-10伏特偏壓下量測漏電流,25µm的微米方形陣列發光二極體(5.85×10-10A)和15µm的微米方形陣列發光二極體(1.37×10-10A)皆較傳統大面積發光二極體(1.79×10-9A)漏電低。 由本篇論文結論可知,利用光輔助電化學氧化製程形成自身氧化Ga2O3氧化層和微米方形陣列發二極體結構有效改善光取出效率和光強度,且因利用厚金屬(Al 350nm)作為跨接導電層(transparent conductive layer)適合應用在高效率氮化鎵發光二極體覆晶式(flip-chip)元件。
其他識別: U0005-0308200710225400
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.