Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10409
標題: A Study of Sheet Resistance Uniformity in Ion-Implanted 12 inch Si Shallow Junction
離子佈植於十二吋矽晶圓淺接面片電阻均勻度之研究
作者: 陳健煌
C.H.Chen
關鍵字: Ion implantion
離子佈植
Secondary Ion Mass Spectroscopy
Resistance Sheet
二次離子質譜術
片電阻
出版社: 材料科學與工程學系所
引用: 參考文獻 [1] D. A. Neamen, “Semiconductor Physics and Devices”, p. 10, 2003. [2] A. F. Tasch and S. K. Banerjee, “Ultra-Shallow Junction Formation in Silicon Using Ion Implantation”, Nucl. Instr. and Meth. in Phys. Res., vol. 112, p. 117, 1996. [3] H. C. Cheng, W. K. Lai, C. C. Hwang, M. H. Juang S. C. Chu and T. F. Liu, “Suppression of Boron Penetration for p Stacked Poly-Si Gates by Using Inductively Coupled N2 Plasma Treatment”, IEEE Tran. Electron Device, vol. 20, p. 535, 1999. [4] S. C. Jain, W. Schoenmaker, R. Lindsay, P. A. Stolk, S. Decoutere, M. Willander, and H. E. Maes, “Transient Enhanced Diffusion of Boron in Si”, J. Appl. Phys., vol. 91, p. 8919, 2002. [5] A. Agarwal, S. N. Hong, G. A. Ruggles and J. J. Wortman “Ultra-Shall Junction Formation Using Conventional Ion Implantation and Rapid Thermal Annealing”, Ion Implantation Technology Conference Proceedings, p. 293, 2000. [6] 張文亮,淺談超淺型接面的製程,奈米通訊,第八卷第二期,p. 9,2001 [7] P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer and J. M. Poate, “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys., vol. 81, p. 6031, 1997. [8] 羅正忠,張鼎張,半導體製程技術導論,台灣培生教育出版公司,p. 270, 2001 [9] 林鴻志,奈米金氧半電晶體元件技術發展驅勢(II),奈米通訊第七卷第二期,2000 [10] 莊達人,VLSI 製造技術,高立圖書有限公司,p. 413,2006 [11] "Semiconductor Process Trainee guide", Varian Semiconductor Equipment, 2006. [12] A. H. Liang, S. L. Chiang, C. T. Chen, H. Niu, and M. S. Tseng, “Depth Profiles of Cluster-Ion-Implanted BSi in Silicon”, Nucl. Instr. and Meth. in Phys. Res., vol. 190, p. 767, 2002. [13] S. Ofbr, C. P. Robert, R. L. Ana, W. Jereld and E. S. Thomas, “Thin Film Atomic Layer Deposition Equipment for Semiconductor Processing”, Thin Solid Films, vol. 402, p. 248, 2002. [14] M. C. Ozturk, J. J. Wortman, C. M. Osburn, A. Ajmera, E. Frey ,W. K. Chu, and C. Lee, “Optimization of Germanium Preamorphization Conditions for Shallow-Junction Formation”, IEEE Tran. Electron Devices, vol. 35, p. 659, 1988. [15] P. C. Ling, M. D. Strathman, C. H. Ling, B. Doyle and D. Walsh, “A New Method for Making Shallow P-Type Junctions”, Ion Implantation Technology Conference Proceedings, vol. 2, p. 1175, 1998. [16] N. Shimada, T. Aoki, J. Matsuo, I. Yamada, K. Goto, and T. S.Mater. “Reduction of Boron Transient Enhanced Diffusion in Silicon by Low-Energy Cluster Ion Implantation”, Mat. Chem. and Phys., vol. 54, p. 80, 1998. [17] A. Bousetta, J. A. Berg, D. G. Armour, and P. C. Zalm, “Si Ultra-shallow p-n Junctions Using Low‐Energy Boron Implantation”, Appl. Phys. Lett., vol. 58, p. 1626, 1991 . [18] S. N. Hong, G. A. Paulos, J. J. Wortman, and M. C. Ozturk, “Formation of Ultra-shallow p-n Junctions by Low‐Energy Boron Implantation Using A Modified Ion Implanter”, Appl. Phys. Lett., vol. 53, p. 1741, 1988. [19] D. F. Downey and R. B. Liebert, “Control of BF2 Dissociation in High-Current Ion Implantation”, Nucl. Instr. and Meth. in Phys. Res., vol. 55, p. 49, 1991. [20] A. Hori, H. Nakaoka, H. Umimoto, K. Yamashita, M. Takase, N. Shimizu and B. Mizuno, “A 0.05 μm-CMOS with Ultra Shallow Source/Drain Junctions Fabricated by 5 keV Ion Implantation and Rapid Thermal Annealing”, IEEE Tran. Electron Device, vol. 94, p. 485, 1994. [21] Q. Wang, C. M. Osburn and C. A. Canovai, “Ultra-Shallow Junction Formation Using Silicate as a Diffusion Source and Low Thermal Budget”, IEEE Tran. Electron Device, vol. 39, p. 2486, 1992. [22] S. N. Hong, G. A. Ruggles, J. J. Wortman and M. C. Ozturk, ”Material and Electrical Properties of Ultra-Shallow p-n Junctions Formed by Low-Energy Ion Implantation and Rapid Thermal Annealing”, IEEE Tran. Electron Device, vol. 38, p. 476, 1991. [23] P. G. Carey, T. W. Sigmon, R. L. Press and T. S. Fahlen, “Ultra-Shallow High-Concentration Boron Profiles for CMOS Processing”, IEEE Tran. Electron Device, vol. 6, p. 291, 2005. [24] 林明俊,離子佈植機簡介,電子月刊,第一卷第一期,1995 [25] 任克川,離子佈植機簡介(二),電子月刊,第一卷第四期,1995 [26] 張勁燕,半導體製程設備,五南圖書出版公司 ,p. 205,2000 [27] 蘇清森,真空技術精華,五南圖書出版公司 ,p. 24,2004 [28] 羅文雄,蔡榮輝,半導體製造技術,蒼海書局,p. 560, 2001 [29] A. C. Ajimera, G. A. Rozgonyi, and R. B. Fair, ”Structural and Electrical Properties of Ge Ion Implanted Si Layer”, Nucl. Instr. and Meth. in Phys. Res., vol. 39, p. 379, 1989. [30] 汪建民主編,材料分析,中國材料學會,p.383,1998. [31] N. Variam, A. Kontos, E. Arevalo, C. Hatem and S. Chen, “New Approaches to Ultra Shallow Junction Formation by Molecular Implantation and Millisecond Laser Spike Annealing”, 15th IEEE Int. Conf. on Adv. Thermal Proc. of Semicon., p. 291, 2001. [32] 洪裕明“利用低能量離子佈植技術以形成p-n超淺接面之研究”,逢甲大學電機工程學系碩士論文,1999. [33] 韓昊名“硼核團離子佈植技術應用於淺接面製作及相關特性之研究”,國立清華大學工程與系統科學系碩士論文,2003. [34] 陳律璋“低能量離子植入的表面電荷效應之研究”,國立交通大學電資學院學程碩士論文,2002. [35] 吳巧慧“超低溫鍺化硼分子離子佈植技術應用於製作淺接面半導體元件之特性研究”,國立清華大學工程與系統科學系碩士論文,2006. [36] "Semiconductor High Current operations and Maintenance Trainee guide", Varian Semiconductor Equipment, 2004.
摘要: With the progress of semiconductor fabrication processes, the device size is getting smaller and circuit layout becomes more complicated. Nevertheless, the current channel of MOSFET is shortened with the shrinking of device size, which will lead to the problem of so-called short channel effect (SCE). In order to suppress the SCE, the ultra-shallow junction (USJ) structure of semiconductor device is introduced and the low energy ion implantation is an important factor in this technique. In this study, the ion implanter was applied to fabricate USJ using Boron ion in n-type (100) Si substrate. The implantation doseage and annealing temperature are 6×1015 ions/cm2 and 950 C, respectively. The drift, process chamber decel and double decel modes of ion implanter controlled conditions were optimized for USJ fabrication. The different decel ratios (1.5 %, 2 % and 3 %) and implant energies (2.5 keV, 3 keV and 3.5 keV) were used to investigate the implant concentration, thermal wave and sheet resistance. The uniformity of sheet resistance is 0.87 % with the decel ration of 1.57 %. The thermal wave unit is 1350 TWU with 3.5 keV implant energy. Finally, the measurement of secondary ion mass spectroscopy was adopted to confirm the implant depth.
隨著半導體製程技術的演進,積體電路的電路佈局也愈來愈複雜,元件尺寸也越來越小;當閘極長度也因此變短時,元件電流通道也會跟著被縮短,但是通道的尺寸是不可能無限制地縮小下去的,否則隨之而來的短通道效應(short channel effect, SCE)問題將更嚴重。為了改善短通道效應的現象,超淺型接面(ultra-shallow junction, USJ)之低能量佈植技術將變得相當重要。 本論文以離子植入機作為實驗設備,植入氣體為硼離子,佈植於n 型的(001)矽基材上,離子植入劑量為6.00×1015 ions/cm2,植入後使用回火溫度為950℃持溫10 秒;使用三種離子植入機台的製程條件控制模式,分別為能量模式漂移(drift)模式、製程腔體減速(process chamber decel, PCD)模式及雙重減速(double decel, DD)模式;並使用不同減速定量值(1.5 %, 2 %, 3 %),以及不同能量差異(2.5 keV, 3 keV, 3.5 keV),觀察植入後基板的片電阻、熱波形、離子植入濃度以及均勻度等特性;當減速定量值為1.57 %時,片電阻均勻度為0.87 %;離子能量為3.5 keV時,熱波形量測結果為1350 TWU;最後使用二次離子質譜儀(secondary ion mass spectroscopy, SIMS)驗證離子植入之深度。
URI: http://hdl.handle.net/11455/10409
其他識別: U0005-2901201221462300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2901201221462300
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.