Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10428
標題: 矽鍺薄膜之熱電特性的尺寸效應以及其與氫感測能力之關係
The Size Effect on Thermoelectric Properties of Silicon-Germanium Thin Film and Its Relationship with Hydrogen Sensing Abilities
作者: 黃俊豪
Huang, Chun-Hao
關鍵字: Si1-xGex thin film
矽鍺薄膜
RF magnetron sputter
the thickness of thin film
thermoelectric property
hydrogen gas sensor
射頻磁控濺鍍
薄膜厚度
熱電特性
氫氣感測器
出版社: 材料科學與工程學系所
引用: [1] F. Qiu, W. Shin, M. Matsumiya, N. Izu and N. Murayama, “Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film,” The Japan Society of Applied Physics, 42, 1563-1567, (2003). [2] 陶長元、唐金晶、杜軍、孫才新,“氫敏材料及氫氣傳感器的研究進展”,材料導報,第19卷,第2期,第9-11頁,(2005)。 [3] F. Qiu, M. Matsumiya, W. Shin, N. Izu, N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sensors and Actuators B, 94, 152-160, (2003). [4] 朱旭山,“熱電材料與元件之原理與應用”,工業材料雜誌,第220期,第93-103頁,(2005)。 [5] Fabin Qiu, Woosuck Shin, Masahiko Matsumiya, Noriya Izu, Norimitsu Murayama, “Hydrogen-sensing properties of multi-layer device Pt/SiGe sputtered on oxidized silicon substrate,” Materials Chemistry and Physics, 82, 575-582, (2003). [6] 吳財福、陳裕愷、張健軒,“太陽光電能供電與照明系統綜論第二版”,全華科技圖書股份有限公司,P2-6-P2-9,(2007)。 [7] 游志樸、林尚明、葉逸彥、嚴建國,“半導體材料”,新文京開發,第305-314頁,(2003)。 [8] 姜洪義、王華文、任衛,“SiGe熱電材料的發展與展望”,材料導報,第21卷,第7期,第119-121頁,(2007)。 [9] 陳坤明、張俊彥,“複晶矽鍺薄膜之成長與元件應用”,毫微米通訊,第8卷,第2期,第27-30頁。 [10] 趙策洲、高勇,“半導體矽基材料即其光波導”,電子工業出版社,(1997)。 [11] S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, D. L. Harame, “Heterojunction Bipolar Transistors Using Si-Ge Alloys,” IEEE Trans. Electron Devices, 36(10), 2043-2064, (1989). [12] Guo-Ping Ru, Xin-Ping Qu, Qiang Gu, Wen-Jie Qi, Bing-Zong Li, “ Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films,” Materials Letters, 57, 921-924, (2002). [13] Michael Quirk, Julian Serda著,羅文雄,蔡榮輝,鄭岫盈譯,“半導體製造技術”,滄海書局,台灣培生教育出版股份有限公司,(2006)。 [14] J.B. Rem, M.C.V. de Leuw, J. Holleman, J.F. Verweij, “Furnace and rapid thermal crystallization of amorphous GexSi1-x and Si for thin film transistors,” Thin Solid Films, 296, 152-156, (1997). [15] Shanglong Peng, Xiaoyan Shen, Zeguo Tang, Deyan He, “Au-induced crystallization of hydrogenated amorphous Si1−xGex (0.2≤x≤1) thin films with chemical source at low temperature,” Materials Chemistry and Physics, 107, 431-434, (2008). [16] M.N. Makadsi, M.F.A. Alias, A.A. Essa, H.R. AI-Azawi, “FT-IR and XPS analysis of a-Si1-xGex:H thin films,” Renewable Energy, 28, 975-984, (2003). [17] Glenn G. Jernigan, Phillip E. Thompson, “The effect of Sb surfactant assisted growth on SiGe surface morphology,” Thin Solid Films, 472, 16-19, (2005). [18] Sang-Gi Kim, Jongdae Kim, In-Ho Bae, Jin Gun Koo, Kee-Soo Nam, “Analysis of Si1-xGex on Si heterostructures grown by MBE as a function of substrate temperature,” Journal of Crystal Growth, 186, 375-381, (1998). [19] MOHAN KRISHAN BHAN, L. K. MALHOTRA, SUBHASH C. KASHYAP, “ELECTRICAL AND OPTICAL PROPERTIES OF ION-BEAMSPUTTERED,” Thin Solid Films, 203, 23-32, (1991). [20] D. Parnis, E. Zolotoyabko, W.D.Kaplan, M. Eizenberg, N. Mosleh, F. Meyer, C. Schwebel, “Structural disorder in SiGe films grown epitaxially on Si by ion beam sputter deposition,” Thin Solid Films, 294, 64-68, (1997). [21] L.K. Teh, W.K. Choi, L.K. Bera, W.K. Chim, “Structural characterization of polycrystalline SiGe thin film,” Solid-State Electronics, 45, 1963-1966, (2001). [22] Isao Nakamura, Toru Ajiki, Masao Isomura, “Low Temperature Fabrication of Microcrystalline Silicon Germanium Films by RF Reactive Magnetron Sputtering,” Materials Research Society, 910, (2006). [23] I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, M. Isomura, “Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar-H2 mixture gases,” Vacuum, 80, 712-715, (2006). [24] Kazuki TAJIMA, Woosuck SHIN, Norimitsu MURAYAMA, Toshio ITOH, Noriya IZU, Ichiro MATSUBARA, “Preparation of Phophorus-Doped Si0.8Ge0.2 Thermoelectric Thin Film Using RF Sputtering with Induction Coil,” Journal of the Ceramic Society of Japan, 113(8), 558-561, (2005). [25] 陳建人等,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心,P407,(2001)。 [26] 柯賢文,“表面與薄膜處理技術”,全華科技圖書股份有限公司,(2004)。 [27] 白木靖寬、吉田貞史,“薄膜工程學”,全華科技圖書股份有限公司,P 1-34,圖1.7,(2004)。 [28] M.Ohring, “Materials science of thin films: deposition and structured,2nd ed.,” Academic Press,San Diego, 497-507, (2002). [29] J. A. Thornton, “High rate thick film growth,” Annual Review of Materials Science, Vol.7, 239-260, (1977). [30] 何靖雯,“摻雜濃度對矽鍺薄膜熱電及氫感測特性之影響”,碩士論文, 國立中興大學材料科學與工程學系研究所,(2010)。 [31] Emil V. Jelenkovic, K.Y. Tong, W.Y. Cheung, I.H. Wilson, S.P. Wong, M.C. Poon, “Low temperature doping of poly-SiGe films with boron by co-sputtering,” Thin Solid Films, 368, 55-60, (2000). [32] 王光偉、茹國帄、張建民、曹繼華、李炳宗,“濺射SiGe薄膜及其等時等溫退火效應”,半導體學報第27卷第5期,P846-P851,(2006)。 [33] W. K. Choi, L. K. Teh, L. K. Bera, W. K. Chim, A. T. S Wee, Y. X. Jie, “Microstructural characterization of rf sputtered polycrystalline silicon germanium films,” JOURNAL OF APPLIED PHYSICS, Vol.9, NO.1, 444-450, (2002). [34] 李哲瀚,“以射頻磁控濺鍍法製備矽鍺熱電薄膜”,碩士論文, 國立中興大學材料科學與工程學系研究所,(2009)。 [35] 尹新淳,“以射頻磁控濺鍍法製備P型矽鍺熱電薄膜與熱退火對熱電性質之影響”,碩士論文, 國立中興大學材料科學與工程學系研究所,(2010)。 [36] 趙中興,“感測器與量測技術”,全華科技圖書股份有限公司,(2001)。 [37] 欒偉玲、塗善東,“溫差電技術的研究進展”,科學通報,第49卷,第11期,第1011-1019頁,(2004)。 [38] Ingemar Lundstrom, “Approaches and mechanisms to solid state based sensing,” Sensors and Actuators B, 35-36, 11-19, (1996). [39] C.C.Liu, P.J.Hesketh, G.W.Hunter, “Chemical microsensors,” The Electrochemical Society Interface, (2004). [40] Kazuki TAJIMA, Fabin QIU, Woosuck SHIN, Naoya SAWAGUCHI, Noriya IZU, Ichiro MATSUBARA, Norimitsu MURAYAMA, “Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor,”of Supported Catalyst,” Japanese Journal of Applied Physics, Vol. 43, NO. 9A, 5978-5983, (2004). [41] Fabin Qiu, Woosuck Shin, Masahiko Matsumiya, Noriya Izu, Ichiro Matsubara, Norimitsu Murayama, “Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film,” Sensors and Actuators B, 103, 252-259, (2004). [42] Jiansong Zhang, Weiling Luan, Hu Huang, Yunshi Qi, Shan-Tung Tu, “Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor,” Sensors and Actuators B, 128, 266-272, (2007). [43] W. Shin, M. Matsumiya, F. Qiu, N. Izu, N. Murayama, “Thermoelectric gas sensor for detection of high hydrogen concentration,” Sensors and Actuators B, 97, 344-347, (2004). [44] Kazuki Tajima, Fabin Qiu, Woosuck Shin, Noriya Izu, Ichiro Matsubara, Norimitsu Murayama, “Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sensors and Actuators B, 108, 973-978, (2005). [45] 童冠霖,“以射頻磁控濺鍍法製備矽鍺熱電薄膜與用於氫感測研究”,碩士論文, 國立中興大學材料科學與工程學系研究所,(2010)。 [46] D. M. Rowe, “CRC Handbook of Thermoelectrics,” CRC Press Boca Raton London New York Washington,D.C., (1995). [47] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, (1992). [48] Y. Hijikata, H. Yaguchi, M. Yoshikawa, S. Yoshida, “Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films,” Applied Surface Science, 184, 161-166, (2001). [49] Wentao Xu, Boquan Li, Toshiyuki Fujimoto, Isao Kojima, “Suppressing the surface roughness and columnar growth of silicon nitride films,” Surface and Coatings Technology, 135, 274-278, (2001).
摘要: In this study, silicon-germanium (Si1-xGex) thin film were prepared on the quartz glass substrate by RF magnetron sputter. The target was a Ge target mounted Si plug, by which a film composition of Si0.8Ge0.2 was obtained. By changing the thickness of thin film and the dimension of substrate, we found relationship between film size and thermoelectric properties, forming a basis of device miniaturization. Simultaneously, Si thin films were made with the same parameters in order to compare those with Si1-xGex thin film. Finally, we attached Pt coated ACC on all the thin films and measured their hydrogen sensing ability by an in-house system with 1% and 0.1% hydrogen air flow. When a thickness of 344 nm for the Si1-xGex thin film is, it has the carrier concentration of 5×1016 cm-3, the carrier mobility of 0.76 cm2/Vs, the conductivity of 7.7×10-3 /Ωm, the best Seebeck coefficient of ﹣0.78 mV/K and the best power factor of 4.7×10-3 W/K2m. Meanwhile, it was also found that with the decrease of the substrate dimension, the properties change rarely. This is beneficial for the miniaturization of device in the future. In the hydrogen sensing ability of all the thin films, we also found the thickness of the Si1-xGex thin film which has the best hydrogen sensing ability is 344 nm. When two Si1-xGex thin films which have different thickness have the same absolute value of Seebeck coefficient, the higher the power factor a film has, the better hydrogen sensing ability it possesses. Finally, when two different kind of thin films which have the close Seebeck coefficient, the higher the power factor a film has, the better hydrogen sensing ability it possesses.
本研究利用成分比為Si0.8Ge0.2之鑲埋靶,以改變薄膜厚度與基材尺寸大小作為實驗參數,經由射頻磁控濺鍍法在石英玻璃基材上沉積Si1-xGex薄膜,探討其材料性質、電性和熱電特性,進而了解最佳電性與熱電特性之厚度與尺寸為何,以作為日後製備元件微型化之基礎。同時利用相同實驗參數製備Si薄膜,目的是為了與Si1-xGex薄膜比較。最後將鍍有Pt之碳纖維布作為催化層並貼附於所有薄膜上,利用自組裝氫感測量測系統,通以1 %與0.1 %之氫氣,量測其氫氣感測能力,並取Si1-xGex薄膜與Si薄膜之熱電特性最佳者來進行氫氣感測能力比較。 由實驗結果顯示,當Si1-xGex薄膜厚度為344 nm時,載子濃度為5×1016 cm-3、載子遷移率為0.76 cm2/Vs、電導率為7.7×10-3 /Ωm,具有最大Seebeck 係數與功率因子,分別為﹣0.78 mV/K和4.7×10-3 W/K2m;並且發現隨著基材尺寸縮小,其電性與熱電特性無太大變化,因此有利於未來微型化之發展。 在氫感測能力方面,當Si1-xGex薄膜厚度為344 nm時,不僅具有最大Seebeck 係數與功率因子,其氫感測能力也為最佳,而發現當Seebeck 係數之絕對值為一定值時,功率因子大者,其氫感測能力會較佳。比較熱電特性最佳且數值接近之Si1-xGex薄膜與Si薄膜的氫感測能力,發現當Seebeck 係數接近時,功率因子較大者,其氫感測能力表現也會較好。
URI: http://hdl.handle.net/11455/10428
其他識別: U0005-2906201116102500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906201116102500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.