Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10435
標題: B/Ag底層對於FePt薄膜影響其磁性質及微結構之研究
B/Ag underlayer effects on magnetic properties and microstructure of FePt thin film
作者: 林峮玄
Lin, Chiun-Shiuan
關鍵字: B
底層
Ag
FePt
magnetic
薄膜
出版社: 材料科學與工程學系所
引用: [1] R. Wood, “Future hard disk drive systems”, J. Magn. Magn. Mater., vol. 321, p. 555-561, (2009). [2] http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html, on loan from IBM. [3] M. Bainich, J. Proto, A. Fert, F. Nguyen Van Dau, F. Petroff, Phys. Rev. let, 61, 2472 (1988). [4] D. Weller and A. Moser, IEEE Trans. Magn., Vol.35, 4423 (1999). [5] Eric E. Fullerton, D. T. Margulies, M. E. Schabes, M. carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, and H. Rosen, Appl. Phys. Lett., Vol.77, 3806 (2000). [6] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., Vol.36, 10 (2000). [7] WD Caviar Green 3TB, http://www.wdc.com/en/products/products.aspx?id=120 [8] 楊志信,垂直磁記錄原理,台灣資訊儲存技術協會會刊2005邀稿。 [9] Soshin Chikazumi著,張煦,李學養合譯,磁性物理學。 [10] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., Vol.36, 10 (2000). [11] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa, IEEE Trans. Magn., Vol. 45, 10 (2009). [12] 金重勳,“磁性技術手冊”,中華民國磁性技術協會,2002 年。 [13] 蕭世男,初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響,逢甲大學材料科學與工程學系博士論文 (2011). [14] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 2, American Society For Metals, second printing (1987). [15] M. A. I. Nahid and T. Suzuki, Appl. Phys. Lett.,85, 4100 (2004). [16] B. E. Warren, “X-ray Diffraction”, Dover, New York, 1990, p. 227. [17] 許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,第十三章,1996年。 [18] Hari Singh Nalwa, Stevenson Ranch, Calif, “Magnetic Nanostructure” (2002). [19] P. Villas and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, 4, American Society for Metal, Metals Park, OH, (1991). [20] JCPDS card, Card No.03-0921. [21] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 1, American Society For Metals, second printing (1987). [22] S. C. Chen , P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu, Materials Science and Engineering B88, 91 (2002). [23] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., Vol.83, p. 2196 (2003). [24] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys.,Vol. 92, 10 (2002). [25] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys.,Vol.100, 056105 (2006). [26] Y. Khan, E. Kneller, and M. Sostarich, Z. Metallkd., 73, 624-626 (1982). [27] E. Hassler, T. Lundstrom, and L.E. Tergenius, J. Less-Common Met., 67(2), 567-572 (1979). [28] I. Karakaya and W.T. Thompson, Bull. Alloy Phase Diagrams, 11(6), 547 (1990). [29] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 197~198 (2009). [30] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 199 (2009). [31] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 201 (2009). [32] Edited by D. E. Gray, McGraw-Hill American Institute of Physics Handbook., (1972). [33] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 202 (2009). [34] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 203 (2009). [35] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 48 (2009). [36] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 53 (2009). [37] E. C. Stoner, Phil. Mag., Vol.36, 803 (1945). [38] J. A. Osborn, Phys. Rev., Vol.67, 351 (1945). [39] Cullity Graham, “Introduction to Magnetic Materials”, Second Edition, p. 53. [40] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 236 (2009). [41] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 361 (2009). [42] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner, IEEE Trans. Magn., 36, 10 (2000). [43] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 316 (2009). [44] 莊達人編著,“VLSI製程技術”,高立圖書有限公司,第五章。 [45] Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys., vol. 93, p. 8152, (2003). [46] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., vol. 83, p. 2196, (2003). [47] Z. L. Zhao, J. S. Chen, J. Ding, K. Inaba, and J. P. Wang, J. Magn. Magn. Mater., vol. 282, p. 105-108, (2004). [48] Z. L. Zhao, J. Ding, J. B. Yi, J. S. Chen, J. H. Zeng, and J. P. Wang, J. Appl. Phys., vol. 97, p. 10H502, (2005). [49] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys., vol. 100, p. 056105, (2006). [50] J. S. Chen, J. F. Hu, B. C. Lim, W. L. Phyoe, B. Liu, and G. Ju, J. Appl. Phys., vol. 105, p. 07B724, (2008). [51] T. O. Seki, Y. K. Takahashi, and K. Hono, J. Appl. Phys., vol. 103, p. 023910, (2008). [52] B. Wang, K. Barmak, T. J. Klemmer, IEEE Trans. Magn., vol. 46, NO. 6, (2010). [53] Y. S. Yu, T. A. George, W. L. Li, L. P.Yue, W. D. Fei, Haibo Li, D. J. Sellmyer, IEEE Trans. Magn., vol. 46, NO. 6, (2010) [54] Y. Zhang, J. Wan, M. J. Bonder, G. C. Hadjipanayis, and D. Weller, J. Appl. Phys., vol. 93, p. 7175-7177, (2003). [55] L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, J. Magn. Magn. Mater., vol. 322, p. 2658-2664, (2010). [56] C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van der Veerdonk, J.K. Howard, A.G. Roy, D.E. Laughlin, J. Appl. Phys., 92 (2002) 6104. [57] J. S. Chen, Y. Z. Zhou, C. J. Sun, S. W. Han, and G. M. Chow, Appl. Phys. Lett., vol. 98, p. 131914, (2011). [58] C. P. Luo, S. H. Liou, and L. Gao, Appl. Phys. Lett., vol 77, 14 2 (2000). [59] H. Zeng, R. Sabirianov, O. Mryasov, M. Yan, K. Cho, and D. Sellmyer, Physical Review B, vol. 66, (2002). [60] T. Aoyama, I. Sato, H. Ito, and S. Ishio, J. Magn. Magn. Mater., vol. 287, p. 209-213, (2005). [61] Y. L. Li, T. F. Feng, and Z. Y. Chen, Applied Surface Science, vol. 257, p. 3666-3669, (2011). [62] S. D. Granz, K. Barmak, and M. H. Kryder, J. Appl. Phys., vol. 111, p. 07B709, (2012). [63] 江政忠,“真空技術與應用”,國家實驗研究室儀器科技研究中心,第十三章,2001年 [64] Alfred Grill, “Cold Plasma in Materials Fabrication”, IEEE Press, New York, p.26, (1994). [65] Alfred Grill, “Cold Plasma in Materials Fabrication”, IEEE Press, New York, p.29, (1994). [66] Alfred Grill, “Cold Plasma in Materials Fabrication”, IEEE Press, New York, p.31-39, (1994). [67] 林怡君,蔡佳霖,鉻鉑底層對鐵鉑薄膜磁性與微結構之研究,國立中興大學材料科學與工程學系碩士論文 (2007)。 [68] 田民波,顏怡文,“薄膜技術與薄膜材料”,五南圖書,第十一章,2007年。 [69] http://www.bruker-axs.com, Bruker AXS, “D8 DISCOVER - New Frontiers in the Nano-World”. [70] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, third edition. [71] 吳南均,汪建民,“材料分析”,中國材料科學學會,p. 76,1998年。 [72] http://www.lakeshore.com, Lake Shore Cryotronics, Incorporation, “Vibrating Sample Magnetometers”. [73] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, Second Edition, p. 68 (2009). [74] http://www.jeol.com, JEOL Limited, “JEM-2010 Transmission Electron Microscope”. [75] David B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, second edition (2010). [76] S. D. Granz and M. H. Kryder, J. Magn. Magn. Mater., vol. 324, p. 287-294, (2012). [77] En Yang, David E. Laughlin, and Jian-Gang Zhu, IEEE Trans. Magn., vol. 48, NO. 1, (2012).
摘要: 本實驗利用直流磁控濺鍍系統,以交錯沉積的方式在玻璃基板上製備出膜層結構為Ag(1.1 nm)/FePt(9.5 nm)/Ag(x nm) (x = 0-30)之三層膜,接著利用快速升溫製程(RTP)於800 oC下持溫三分鐘退火。經過熱處理後,Ag原子由底層擴散進FePt膜層中,形成FePt-Ag之薄膜。其中當Ag底層厚度小於1 nm時,相較於純FePt膜層,FePt之序化度由0.71增為0.89,具有明顯的上升。 接著沉積膜層結構為Ag(1.1 nm)/ FePt(9.5 nm)/B(y nm) (y = 1-15)之三層膜於玻璃基板上,而後利用快速升溫製程(RTP)進行退火。實驗結果發現B的含量必須大約小於FePt含量的10%,如此FePt才能保持硬磁的性質。過多的B添加於FePt薄膜中,會使FePt中的Fe與B發生反應形成FeB,具軟磁特性的FeB含量過多時,將使得FePt薄膜呈現軟磁性。 根據上一部分的實驗結果,固定膜厚為1 nm的B中間層,而改變Ag底層的厚度。沉積膜層結構為Ag(1.1 nm)/ FePt(9.5 nm)/B(1 nm)/Ag(z nm) (z = 0-20)之多層膜於玻璃基板上,而後利用快速升溫製程(RTP)進行退火。經過熱處理後,在FePt與B/Ag底層的交界面混合形成FePt(B-Ag)垂直磁化性的顆粒狀薄膜。混溶的(B, Ag)將FePt晶粒均勻的分散並且使其具有均一的晶粒大小,FePt的平均晶粒大小在添加入B/Ag底層之後降至23nm。添加具有良好熱擴散特性的Ag,可促使FePt在較低的溫度達成序化,B則用來分散FePt晶粒以及使其晶粒縮小與尺寸均一化。而FePt/B(1 nm)/Ag(3 nm)薄膜達成具有高垂直磁化性及均一晶粒大小與均勻分散的FePt晶粒。 最後,穿插不同層數B於FePt中,製備膜層結構為Ag(1.1 nm)/ [FePt]n(9.5 nm)/[B]n-1(0.5 nm)/B(0.5 nm)/Ag(3 nm) (n = 2, 4, 6, 8, 10)之多層膜於玻璃基板上,而後利用快速升溫製程(RTP)進行退火。實驗結果呈現出薄膜皆仍具有垂直磁化特性,而當B穿插層增加,FePt晶粒尺寸進一步縮小為13 nm,以及具有均一的大小。
Trilayers Ag(1.1 nm)/FePt(9.5 nm)/Ag(x nm) (thickness x = 0-30) were alternately deposited on a glass substrate and subsequently annealed by rapid thermal process (RTP) at 800 oC for 3 min. After RTP, Ag atoms diffuse into FePt layer from underlayer to form FePt-Ag film. When Ag underlayer thickness less than 1 nm, compared with FePt single layer, the ordering parameter (S) of FePt were strongly increase from 0.71 to 0.89. Then, the Ag(1.1 nm)/ FePt(9.5 nm)/B(y nm) (y = 1-15) trilayers were deposited on a glass substrate and annealed by RTP. In order to maintain FePt hard magnetic properties, from experiment results, B element content in FePt film must be less than 10%. A Fe atom can react with a B atom to form a FeB when large amount of boron were added to FePt film. A FeB compound, which is soft magnetic properties, large amount of FeB can induce FePt film shows soft magnetic properties. According to the experiments from previous section, a B intermediate layer thickness was 1 nm fixed and the Ag underlayer thickness was variable. Multilayers Ag(1.1 nm)/ FePt(9.5 nm)/B(1 nm)/Ag(z nm) (z = 0-20) were deposited on a glass substrate and annealed by RTP. After RTP, the interface between FePt and B/Ag underlayers were intermixed to form FePt(B-Ag) granular films with perpendicular magnetization. The immiscible (B, Ag) were doped to separate and refine FePt grains uniformly. The average FePt grains size isolated by B/Ag underlayer was 23 nm. The Ag with high thermal diffusivity was reduced the ordering temperature and the B was used to refine and separate the FePt grains. The uniform separated FePt grains with high perpendicular magnetization was achieved in FePt/B(1 nm)/Ag(3 nm) film. Finally, B layers were inserted in different number into FePt layer. Multilayers Ag(1.1 nm)/[FePt]n(9.5 nm)/[B]n-1(0.5 nm)/B(0.5 nm)/Ag(3 nm) (n = 2, 4, 6, 8, 10) were deposited on a glass substrate and annealed by RTP. The results showed that films still obtains perpendicular magnetization. When the number of inserted B layers were increase, the average FePt grains size reduced further down to 13 nm and uniformly.
URI: http://hdl.handle.net/11455/10435
其他識別: U0005-2906201202035100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906201202035100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.