Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10443
標題: Fabrication of Nickel Silicide Nanowires by AFM Lithography and Reactive Deposition Epitaxy Processes on SOI Substrates
以原子力顯微鏡微影及反應式磊晶成長法於絕緣層覆矽基材上製備鎳矽化物奈米線
作者: 許家豪
Hsu, Chia-Hao
關鍵字: Atomic Force Microscopy
原子力顯微鏡
nickel silicide
nanowire
Reactive Deposition Epitaxy
鎳矽化物
奈米線
反應式磊晶法
出版社: 材料科學與工程學系所
引用: [1]Z. Liu, H. Zhang, L. Wang, and D. Yang, &quot;Controlling the Growth and Field Emission Properties of Silicide Nanowire Arrays by Direct Silicification of Ni Foil&quot; Nanotechnology 19, 375602 (2008). [2]J. Kim and W. A. Anderson, &quot;Spontaneous Nickel Monosilicide Nanowire Formation by Metal Induced Growth&quot; Thin Solid Films 483, 60 (2005). [3]Y. Song, A. L. Schmitt, and S. Jin, &quot;Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity&quot; Nano Letters 7, 965 (2007). [4]H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey &quot;Exposure of 38 nm Period Grating Patterns with Extreme Ultraviolet Interferometric Lithography&quot; Applied Physics Letters 75, 2328 (1999). [5]P. Candeloro, A. Gerardino, E. D. Fabrizio, S. Cabrini, G. Giannini, L. Mastrogiacomo, M. Ciria, R. C. O''Handley, G. Gubbiotti, and G. Carlotti, &quot;Patterned Magnetic Permalloy and Nickel Films: Fabrication by Electron Beam and X-Ray Lithographic Techniques&quot; Japanese Journal of Applied Physics 41, 5149 (2002). [6]R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, &quot;Lithography with a Focused Soft X-ray Beam and a Monomolecular Resist&quot; Langmuir 20, 2050 (2004). [7]J. Joo, B. Y. Chow, and J. M. Jacobson, &quot;Nanoscale Patterning on Insulating Substrates by Critical Energy Electron Beam Lithography&quot; Nano Letters 6, 2021 (2006). [8]J. Marqués Hueso, R. Abargues, J. Canet Ferrer, S. d. Agouram, J. L. s. Valdés, and J. P. Martínez Pastor, &quot;Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography&quot; Langmuir 26, 2825 (2009). [9]J. C. Garno, Y. Yang, N. A. Amro, S. Cruchon Dupeyrat, S. Chen, and G. Y. Liu, &quot;Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography&quot; Nano Letters 3, 389 (2003). [10]S. Nishimura, T. Ogino, and J. I. Shirakashi, &quot;Micrometer Scale Local Oxidation Lithography Using Scanning Probe Microscopy&quot; Japanese Journal of Applied Physics 47, 715 (2008). [11]Z. Li, M. Wu, T. Liu, C. Wu, Z. Jiao, and B. Zhao, &quot;Preparation of TiO2 Nanowire Gas Nanosensor by AFM Anode Oxidation&quot; Ultramicroscopy 108, 1334 (2008). [12]C. Tsai, S. Jian, and H. Wen, &quot;Tip-Induced Local Anodic Oxidation on p-GaAs Surface with Non-Contact Atomic Force Microscopy&quot; Applied Surface Science 254, 1357 (2007). [13]I. Fernandez Cuesta, X. Borris&eacute;, and F. P&eacute;rez Murano, &quot;Atomic Force Microscopy Local Oxidation of Silicon Nitride Thin Films for Mask Fabrication&quot; Nanotechnology 16, 2731 (2005). [14]陳廷軒, <絕緣上覆矽基材之鎳矽化物薄膜及奈米結構的性質研究>國立中興大學材料科學與工程所碩士論文(2009). [15]J. H. Hsu, M. H. Huang, H. H. Lin, and H. N. Lin, &quot;Selective Growth of Silica Nanowires on Nickel Nanostructures Created by Atomic Force Microscopy Nanomachining&quot; Nanotechnology 17, 170 (2006). [16]S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, and H. Kurz, &quot;Fabrication of Silicon and Metal Nanowires and Dots Using Mechanical Atomic Force Lithography&quot;Journal of Vacuum Science & Technology B 16, 2822 (1998). [17]R. Garcı́a, M. Calleja, and H. Rohrer,&quot;Patterning of Silicon Surfaces with Noncontact Atomic Force Microscopy: Field-Induced Formation of Nanometer-Size Water Bridges&quot; Journal of Applied Physics 86, 1898 (1999). [18]K. E. Bean,&quot;Anisotropic Etching of Silicon&quot; Electron Devices, IEEE Transactions 25, 1185 (1978). [19]J. C. Greenwood, &quot;Ethylene Diamine-Catechol-Water Mixture Shows Preferential Etching of p-n Junction&quot; Journal of The Electrochemical Society 116, 1325 (1969). [20]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, &quot;Anisotropic Etching of Crystalline Silicon in Alkaline Solutions&quot; Journal of The Electrochemical Society 137, 3612 (1990). [21]J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, Y. Huang, G. Zhao, W. Weng, G. Han, and P. Du, &quot;Self-Induced Preparation of Assembled Shrubbery TiSi Nanowires by Chemical Vapor Deposition&quot; Crystal Growth & Design 8, 3543 (2008). [22]B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, &quot;Synthesis and Field Emission Properties of TiSi2 Nanowires&quot; Applied Physics Letters 86, 243103 (2005). [23]Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, and K. N. Tu, &quot;In-situ TEM Observation of Repeating Events of Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of Si&quot; Nano Letters 8, 2194 (2008). [24]Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, &quot;Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures&quot; Nature 430, 704 (2004). [25]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, &quot;Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties&quot; The Journal of Physical Chemistry C 113, 2286 (2009). [26]J. Kim and W. A. Anderson, &quot;Direct Electrical Measurement of the Self-Assembled Nickel Silicide Nanowire&quot; Nano Letters 6, 1356 (2006). [27]J. Kim, W. A. Anderson, Y. J. Song, and G. B. Kim, &quot;Self-Assembled Nanobridge Formation and Spontaneous Growth of Metal-Induced Nanowires&quot; Applied Physics Letters 86, 253101 (2005). [28]K. C. Lu, K. N. Tu, W. W. Wu, L. J. Chen, B. Y. Yoo, and N. V. Myung, &quot;Point Contact Reactions Between Ni and Si Nanowires and Reactive Epitaxial Growth of Axial Nano-NiSi∕Si&quot; Applied Physics Letters 90, 253111 (2007). [29]P. A. Bennett, B. Ashcroft, Z. He, and R. M. Tromp, &quot;Growth Dynamics of Titanium Silicide Nanowires Observed with Low-Energy Electron Microscopy&quot; Journal of Vacuum Science & Technology B 20, 2500 (2002). [30]H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, &quot;Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface&quot; Nano Letters 7, 885 (2007). [31]Z. He, D. Smith, and P. Bennett, &quot;Endotaxial Silicide Nanowires,&quot; Physical Review Letters 93,256102 1 (2004). [32]S. Y. Chen and L. J. Chen, &quot;Self-Assembled Epitaxial NiSi2 Nanowires on Si(001) by Reactive Deposition Epitaxy&quot; Thin Solid Films 508, 222 (2006). [33]S. Y. Chen and L. J. Chen, &quot;Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si&quot; Applied Physics Letters 87, 253111 (2005). [34]F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, &quot;Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching&quot; Applied Physics Letters 75, 2429 (1999). [35]K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, and K. N. Tu &quot;In situ Control of Atomic-Scale Si Layer with Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through Point Contact Reaction&quot; Nano Letters 7, 2389 (2007). [36]A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, &quot;Concentration-Controlled Phase Selection of Silicide Formation During Reactive Deposition&quot; Applied Physics Letters 74, 3137(1999). [37]G. B. Kim, D. J. Yoo, H. K. Baik, J. M. Myoung, S. M. Lee, S. H. Oh, and C. G. Park &quot;Improved Thermal Stability of Ni Silicide on Si (100) Through Reactive Deposition of Ni&quot; Journal of Vacuum Science & Technology B 21, 319(2003). [38]Y. C. Lin, Y. Chen, D. Xu, and Y. Huang, &quot;Growth of Nickel Silicides in Si and Si/SiOx Core/Shell Nanowires&quot; Nano Letters 10, 4721 (2010). [39] L. J. Chen, “Silicide technology for integrated circuits” IEE, London(2004).
摘要: As the dimension of microelectronic devices shrink into nanometer, improving the quality of the interconnections between electrodes and devices is an important object in the semiconductor industry. Low-resistance metal silicides have excellent electric properties and low contact resistance of the contact between metal and silicon when their size reduces to nanometer scale. Nickel monosilicide is a promising material for applying in the nanoelectronic devices because it has low Si consumption and no size-dependence effects. Scanning probe lithography process is a simpler method than others because it can work in air and is easy to manipulate the position of devices. Using the reactive deposition epitaxy (RDE) method can promote epitaxial growth of metal silicide on silicon. Thus, in this study, Si nanowires were fabricated on SOI substrates by AFM field-induced local oxidation lithography and selective wet etching. The Si nanowires transformed into nickel silicide nanowires further by RDE. Furthermore, the effects of the amount of nickel that participated in the formation of silicide and the deposition temperature on the structural and electrical properties of nanowires were studied. The experimental results show that the initial phase was NiSi2, and then transformed to Ni2Si phase further when the deposition rate was 0.005 &Aring;/s and the deposition temperatures were 500 and 700°C. The nanowires had smooth surface when the epitaxial NiSi2 was formed in the initial stage at 500°C. After the formation of a NiSi2 nanowire, the protrudent Ni2Si particles were formed at several regions of NiSi2 nanowire. However, for the reaction at 700°C, protrudent Ni2Si particles had already been formed on the nanowire before the formation of a whole NiSi2 nanowire. In addition, the mean spacing of nucleation for the reaction at 500°C was less than that for the reaction at 700°C. The resistivity of nickel silicide nanowire that was formed at 700 °C for the Ni/Si atomic radio of 1 was 86 μΩ-cm. When the nickel silicide nanowires were formed at 500°C for the Ni/Si atomic radio of 2/3 and 1 their resistivities were 63.3 and 36.7 μΩ-cm, respectively. The failure current density of nickel silicide nanowires that were formed in this study was in the range of 5.4~8.8×10-7 A/cm2.
奈米製程尺寸日益縮小,半導體元件中接觸電極和元件間連線品質更顯重要。低電阻金屬矽化物在奈米尺度下仍保有優異電性,而且可降低金屬與矽的接觸電阻,其中鎳矽化物矽消耗量低,而且沒有小線寬效應,在奈米電子元件中具有高度的應用潛力。利用掃描探針微影術製作奈米元件不需在超高真空環境,以簡單步驟就能進行,而且能精確控制奈米圖樣的位置,可應用在微電子元件中。而反應式磊晶成長法在高溫下沉積金屬,金屬原子能移動至穩定位置沉積,容易與基材磊晶成長金屬矽化物。 因此本實驗使用原子力顯微鏡場致氧化搭配適當濕式蝕刻製備矽奈米線,接著再利用反應式磊晶法(Reactive Deposition Epitaxy,RDE)成長方式生成鎳矽化物,探討鎳蒸鍍量和反應溫度對生成相和電性的影響。研究結果顯示以0.005 &Aring;/s的低鍍率,不論在500℃和700℃反應,都是磊晶NiSi2相率先成長,鎳持續提供,會接著相轉變為多晶Ni2Si相造成奈米線外觀的突起。不同的是500 ℃,蒸鍍鎳量少(Ni/Si原子比為1/3和1/6)時,生成NiSi2磊晶區段表面平坦,待奈米線完全反應成NiSi2後,Ni2Si才由多鎳處接著相轉變,但700 ℃則在Ni/Si原子比為1/6時,就已有Ni2Si(高突顆粒)成長在NiSi2上,造成外觀突起。而且500℃成核的平均距離較700 ℃小。 於700 ℃,多鎳(Ni/Si原子比=1)時,電阻率為86 μΩ-cm,最大電流密度為8.8×10-7 A/cm2;而500 ℃,Ni/Si原子比為2/3電阻率為63.3 μΩ-cm,最大電流密度為5.4×10-7 A/cm2 ,而Ni/Si原子比為1時,低電阻Ni2Si相較多,有較低電阻率36.7 μΩ-cm,其電流密度大於5.9×10-7 A/cm2。
URI: http://hdl.handle.net/11455/10443
其他識別: U0005-3001201218242200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001201218242200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.