Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10449
標題: 薄膜封裝結構在有機太陽能電池之技術開發與研究
Development and Characterization of Thin-Film Packaging Structure for Organic Solar Cells
作者: Lin, Chen-Yuan
林鎮元
關鍵字: polymer solar cells
高分子太陽電池
P3HT
PCBM
bulk-heterojunction
flexible
barrier layers
P3HT
PCBM
塊材異質接面結構
可撓式
阻障層
出版社: 材料科學與工程學系所
引用: 參考文獻 [1] 漢斯.勞申巴赫著,張金熹,廖春發,傅德棣等譯“太陽電池陣設計手冊”宇航出版社 (1987)。 [2] 安其霖,曹國琛,李國欣等編“太陽電池原理與工藝”上海科學技術出版社 (1984)。 [3] 鄭弘彬,洪勝富“有機無機混合太陽電池製程之研究”碩士論文,國立清華大學 (2006)。 [4] C. W. Tang, “Two-layer organic photovoltaic cell” Appl. Phys. Lett. 48 (1986) 183. [5] P. Peuman, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells” J. Appl. Phys. 93 (2003) 3693. [6] J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances” Appl. Phys. Lett. 84 (2004) 3013. [7] B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353 (1991) 737. [8] H. Spanggaard and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics” Sol. Energy Mater. Sol. Cells 83 (2004) 125. [9] G. Li, V. Shrotriya, J. Huang, Y. Yao and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature Mater. 4 (2005) 864. [10] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” Adv. Funct. Mater. 15 (2005) 1617. [11] M. A. Green, K.Emery, D. L. King, S. Igari and W. Warta, Prog., “Short Communication: solar cell efficiency tables (version 25)” Photovolt: Res. Appl. 13 (2005) 387. [12] 徐明生,李振國,闕端麟“有機太陽電池研究進展”材料科學與工程 18 (2002) 92。 [13] 馬振基,張正華,李陵嵐,葉楚平,楊平華“有機與塑膠太陽能電池”(2007)。 [14] R. D. Bettignies, J. Leroy, M. Firon and C. Sentein, “Accelerated lifetime measurements of P3HT:PCBM solar cells” Synthetic Metals 156 (2006) 510. [15] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latre`che, G. Czeremuszkin and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells” Thin Solid Films 511-512 (2006) 349. [16] F. C. Krebs and K. Norrman, “Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of Testing” Prog. Photovolt: Res. Appl. 15 (2007) 697. [17] J. Lange, Y. Wyser and Packag. “Recent innovations in barrier technologies for plastic packaging-a review” Technol. Sci. 16 (2003) 149. [18] S. Iwamori, Y. Gotoh and K. Moorthi, “Silicon oxide gas barrier films deposited by reactive sputtering” Surf. Coat. Technol. 166 (2003) 24. [19] C. Bichler, T. Kerbstadt, H. C. Langowski and U. Moosheimer, “The substrate-barrier film interface in thin barrier film coating,” Surf. Coat. Technol. 97 (1997) 299. [20] C. H. Jeong, J. H. Lee, J. T. Lim, N. G. Cho, C. H. Moon and G. Y. Yeom, “Deposition of SiO2 by plasma-enhanced chemical vapor deposition as the diffusion barrier to polymer substrates” Jpn. J. Appl. Phys. 44 (2005) 1022. [21] A. N. R. da Silva, N. I. Morimoto and O. Bonnaud, “Tetraethy- lorthosilicate SiO2 films deposited at a low temperature” Micro- electronics reliability 40 (2000) 621. [22] S. M. Sze, “Physics of semiconductor devices” 2nd Edition. [23] 莊嘉琛“太陽能工程 – 太陽電池篇”金華科技圖書股份有限公司 (1997)。 [24] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells ” Adv. Funct. Mater. 1 (2001) 1. [25] Dipl.Ing. Klaus Petritsch “Organic solar cell architectures” Cambridge and Graz (2000). [26] J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices” IEEE J. Quantum Electron. 10 (2004) 45. [27] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, “Reliability and degradation of organic light emittingdevices” Appl. Phys. Lett. 65 (1994) 2922. [28] G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices” Opt. Lett. 22 (1997) 172. [29] M. S. Weaver, J. J. Brown, R. H. Hewitt, S. Y. Mao, L. A. Michalski, T. Ngo, K. Rajan, M. A. Rothman, J. A. Silvernail, W. E. Bennet, C.Bonham, P. E. Burrows, G. L. Graff, M. E. Gross, M. Hall, E. Mast and P. M. Martin, “Flexible organic LEDs: Plastics promise thin panels butpresent new problems” Inform. Display 17 (2001) 26. [30] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J.Heeger, “Flexible light-emitting diodes made from soluble conductingpolymers” Nature 357 (1992) 477. [31] T. B. Harvey, S. Q. Shi and F. So, “Passivated organic device havingalternating layers of polymer and dielectric” U.S. Patent 5757126 (1998). [32] F. B. McCormick, P. F. Baude and G. D. Vernstrom, “Encapsualated organicelectronic devices and method for making the same” InternationalPatent WO A1 (2002) 05361. [33] T. B. Harvey, S. Q. Shi and F. So, “Passivated organic devices” U.S.Patent 5686360 (1997). [34] D. Affinito, “Environmental barrier material for organic light emittingdevice and method for making” U.S. Patent 6268695 (2001). [35] M. S. Weaver, L. A. Michalski, P. E. Burrow and G. L. Graff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates” Appl. Phys. Lett. 81 (2002) 2929. [36] A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers” J. Vac. Sci. Technol. A 18 (2000) 149. [37] H. Chatham, “Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates” Surf. Coat. Technol. 78 (1996) 1. [38] M. Vogt and R. Hauptmann, “Plasma-deposited passivation layers for moisture and water protection” Surf. Coat. Technol. 75 (1995) 676. [39] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera and M. Tsuchida, “Flexible OLED displays using plastic substrates” IEEE J. Quantum Electron. 10 (2004) 107. [40] 莊達人“VLSI製造技術”高立圖書有限公司 (2004)。 [41] S. B. Amor, G. Baud, M. Jacquet, G. Nansé, P. Fioux and M. Nardin, “XPS characterization of plasma-treated and alumina-coated PMMA” Appl. Surf. Sci. 153 (2000) 172. [42] K. Koski, J. Hölsä, P. Juliet, Z.H. Wang, R. Aimo and K. Pischow, “Characterization of aluminium oxide thin films deposition on polycarbonate substrate by reactive magnetron sputtering” Mater. Sci. and Eng. B 65 (1999) 94. [43] Y. Leterrier, “Durabillity of nanosized oxygen-barrier coatings on polymers” Mater. Sci. 48 (2003) 1. [44] W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang and S. Zou, “Low temperature PECVD SiNx films applied in OLED packaging” Mater. Sci. and Eng. B 98 (2003) 248. [45] H. Lin, L. Xu, X. Chen, X. Wang, M. Sheng, F. Stubhan, K. Merkel and J. Wilde, “Moisture-resistant properties of SiNx films prepared by PECVD” Thin Solid Film 333 (1998) 71. [46] H. Y. Low and S. J. Chua, “Mechanical properties of organic light-emitting thin films deposited on polymer-based barrier substrate: potential for flexible organic light-emitting displays” Mater. Lett. 53 (2002) 227. [47] C. Juang, J. H. Chang and R. Y. Hwang, “Properties of very low temperature plasma deposited silicon nitride films” J. Vac. Sci. Technol. B 10 (1992) 1221. [48] T. M. Klein, T. M. Anderson, A. I. Chowdhury and G. N. Parsons, “Hydrogenated silicon nitride thin films deposited between 50 and 250°C using nitrogen/silane mixtures with helium dilution” J. Vac. Sci. Technol. A 17 (1999) 108. [49] W. Xu, T. Fujimoto and I. Kojima, “Preparation and characterization of smooth and dense silicon nitride thin films” Thin Solid Film 394 (2001) 109. [50] W. R. Hall, K. K. Dohrer, M. R. Tant and I. D. Sand, “A diffusion model for water vapor transmission through microporous polyethylene/CaCo3 films” Colloids and Surfaces A: Physicochem. Eng. Aspects 187 (2001) 483. [51] J. Comyn, in: J. Comyn(Ed.), Polymer Permeability, Elsevier Applied Science, London and New York 1986. [52] R. S. Kumar, M. Auch, E. Ou, G. Ewald and C. Soo Jin, “Low moisture permeation measurement through polymer substrates for organic light emitting devices” Thin Solid Films 417 (2002) 120. [53] B. M. Henry, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi and T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates” Thin Solid Films 382 (2001) 194. [54] A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara and M. Yanaka, “Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects” J. Membr. Sci. 208 (2002) 75. [55] D. H. Kim, Y. D. Park, Y. S. Jang, H. C. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. J. Park, T. Y. Chang, C. W. Chang, M. K. Joo, C. Y. Ryu and K. W. Cho, “Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors” Adv. Funct. Mater. 15 (2005) 77. [56] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J.V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics” Sol. Energy Mater. Sol. Cells 90 (2006) 2150. [57] 楊小青“Application of computer simulation in the investigation of photoelectric material”博士論文 國立中山大學 (2004)。 [58] 石政言“Improvement of short-circuit current density of organic solar cells by using post-treatments and different organic solvents” 碩士論文 國立東華大學 (2005)。 [59] 余樹禎“晶體之結構與性質”渤海堂文化公司 (1989)。 [60] “PERMATRAN-W Model 3/61 Operator’s Manual” mocon Chaper 4-5. [61] “OX-TRAN Model 2/61 Operator’s Manual” mocon Chaper 4-5. [62] G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. Bennett, G. L. Graff, N. Rutherford and L. Wiese, “Evaluating high performance diffusion barrier: the calcium test” Proc. Asia Display/IDW01 (2001) [63] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices” Science 258 (1992) 1474. [64] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, “2.5% efficient organic plastic solar cells” Appl. Phys. Lett. 78 (2001) 841. [65] X. Yang and J. Loos, “Toward high-performance polymer solar cells: The importance of morphology control” Macromolecules 40 (2007) 1353. [66] J. K. J. Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen and R. A. J. Janssen, “Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance” Adv. Funct. Mater. 14 (2004) 425. [67] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films” Chem. Phys. Lett. 411 (2005) 138. [68] D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites” Nanotechnology 15 (2004) 1317. [69] A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermal stable pentancene/C60 small molecule based organic solar cells,” Appl. Phys. Lett. 89 (2006) 213506. [70] T. Erd, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene film for organic solar cells” Adv. Funct. Mater. 15 (2005) 1193. [71] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, “Solvent Annealing-effect in polymer solar cells based on poly ( 3-hexylthiophene ) and methanofullerenes” Adv. Funct. Mater. 17 (2007) 1636. [72] F. Monestier, J. -J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend ” Sol. Energy Mater Sol. Cells 91 (2007) 405. [73] G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” J. Appl. Phys. 98 (2005) 043704. [74] S. H. Jin, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, “Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT ︰PCBM system” Sol. Energy Mater Sol. Cells 91 (2007) 1187. [75] H. K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, K. I. Kim and T. Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes” Appl. Phys. Lett. 86 (2005) 183503. [76] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer” Adv. Mater. 18 (2006) 572. [77] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer” Appl. Phys. Lett. 90 (2007) 163517.
摘要: 高分子太陽電池目前所遭遇之難題即光電轉換效率無法超越無機太陽電池,以及其使用時效壽命較短,本論文針對此兩問題進行研究與探討。本研究使用聚(3-己烷噻吩)(P3HT)與C60之衍生物(PCBM),以塊材異質接面結構(bulk heterojunction, BHJ)製作有機太陽電池。元件效率之部份,針對主動層探討不同溶液濃度、溶質比、溶劑退火條件與厚度之影響,另外,包含元件之熱退火及元件工作面積對其效能之影響,藉由改善主動層之光譜吸收率、降低元件之串連電阻、提昇高分子之載子遷移率進而提昇短路電流密度,來得到其最佳參數,將溶液濃度由20 mg/ml(P3HT:PCBM=1:1)改為27.5 mg/ml(P3HT:PCBM=1.75:1)並於真空環境中進行溶劑退火與使用熱退火以140℃烘烤10分鐘並且改變主動層塗佈轉速由1000 rpm改為2500 rpm且將元件工作面積由1 cm2 改為 0.04 cm2,且以加入甘油之PEDOT做為電洞傳輸層使得效率由原始之0.2%提昇至7.73%。此外,本研究中使用不同基板來製作有機太陽電池元件,實驗發現軟性基板對於有機層有較佳之匹配性,故以軟性基板製作出之可撓式有機太陽電池具有與玻璃製作之有機太陽電池擁有相當之光電轉換效率。有機太陽電池的另一問題即其使用壽命較短,本研究以電漿輔助化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD),於80℃之下,沉積氮化矽與氧化矽薄膜,以多層堆疊之方式製作出水氣透過率(Water Vapor Transmission Rate, WVTR) ~3.12×10-6 g/m2/day之無機堆疊水氣阻障層。最佳化之高分子太陽電池經由阻障層封裝後,能有效提升元件使用壽命約30倍。於25℃、相對濕度60%之下,經1500小時後,仍具有原效率之50%的光電轉換效率。
Polymer solar cells (PSCs) are facing two main challenges right now: One is the lower power conversion efficiency (PCE) than that of inorganic solar cells and the other is the short lifetime. In this work, these two essential problems were discussed. The bulk-heterojunction solar cells consisted of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were fabricated on both glass and polymer substrates for comparison. To improve the PCE of the device, the total concentration of the solution, the solute ratio of P3HT:PCBM, the thickness of the active layer, the working area and the annealing condition were studied. The optimum parameter was obtained by improving the absorption ability of the polymer films, reducing the series resistance of the devices and increasing the carrier mobility. The PSC can be increased form 0.2% to 7.73%, after changing the total concentration of the solution from 20 mg/ml (P3HT:PCBM=1:1) to 27.5 mg/ml (P3HT:PCBM=1.75:1), solvent annealing in vacuum, thermal annealing in oven 140℃/10 min, changing the spin speed of active layer from 1000 rpm to 2500 rpm, changing the working area from 1 cm2 to 0.04 cm2 and using the G-PEDOT with a hole transportation layer. Moreover, it was found that the PCEs are similar on both glass and flexible substrates. On the other hand, to extend the lifetime of PSCs, the barrier structure was used for the encapsulation of the PSCs. A multilayer inorganic barrier structure consisting of silicon oxide and silicon nitride films was deposited by plasma-enhanced chemical vapor deposition system with a water vapor transmission rate of 3.12×10-6 g/m2/day. After encapsulation, the lifetime of PSCs increased about 30 times while the shelf lifetime of PSCs was nearly 1500 hours under 25℃, relative humidity 60%.
URI: http://hdl.handle.net/11455/10449
其他識別: U0005-1007200710593400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200710593400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.