Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10453
DC FieldValueLanguage
dc.contributor吳文偉zh_TW
dc.contributor李勝偉zh_TW
dc.contributor.advisor許薰丰zh_TW
dc.contributor.author曾俊翔zh_TW
dc.contributor.authorTseng, Chun-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:45:11Z-
dc.date.available2014-06-06T06:45:11Z-
dc.identifierU0005-1108200714032000zh_TW
dc.identifier.citation1. L. Malmqvist, A. L. Bogdanov, L. Montelius, and H. M. Hertz, “Nanometer table-top proximity x-ray lithography with liquid-target laser-plasma source”, J. Vac. Sci. Technol. B 15, 814 (1997). 2. G. Simon, A. M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launois, and B. Vidal, “Sub-20 nm x-ray nanolithography using conventional mask technologies on monochromatized synchrotron radiation”, J. Vac. Sci. Technol. B 15, 2489 (1997). 3. H. Watanabe, K. Marumoto, H. Sumitani, H. Yabe, K. Kise, K. Itoga, and S. Aya, “50nm pattern printing by narrowband proximity x-ray lithography”, Jpn. J. Appl. Phys. 41, 7550 (2002). 4. F. Robert, “Optical lithography goes to extremes—and beyond ” , Science 293, 785 (2001). 5. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey,“Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett. 75, 2328 (1999). 6. T. Haga, H. Kinoshita, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, and T. Watanabe, “Evaluation of finished extreme ultraviolet lithography (EUVL) masks using a EUV microscope”, Jpn. J. Appl. Phys. 42, 3771 (2003). 7. V. N. Golovkina, P. F. Nealey, F. Cerrina, J. W. Taylor, H. H. Solak, C. David, and J. Gobrecht,“Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography”, J. Vac. Sci. Technol. B 22, 99 (2004). 8. H. Kinoshita, T. Haga, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, T. Shoki, M. Endo, and T. Watanabe, “Actinic mask metrology for extreme ultraviolet lithography”, J. Vac. Sci. Technol. B 22, 264 (2004). 9. S. Kawata, N. Katakura, S. Takahashi, and K. Uchikawa,“Stencil reticle development for electron beam projection system ”, J. Vac. Sci. Technol. B 17, 2864 (1999). 10. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications”, Appl. Surf. Sci. 164, 111 (2000). 11. T. H. P. Chang , M. Mankos, K. Y. Lee, and L. P. Muray,“Multiple electron-beam lithography”, Microelec. Eng. 57-58,117 (2001). 12. Y. Sohda , H. Ohta , F. Murai , J. Yamamoto , H. Kawano , H. Satoh, and H. Itoh,“Recent progress in cell-projection electron-beam lithography”, Microelec. Eng. 67-68, 78 (2003). 13.J. H. Hsu, C.Y. Lin, and H. N. Lin, “Fabrication of metallic nanostructures bt atomic force microscopy nanomachining and lift-off process”, J. Vac. Sci. Technol. B 22, 2768 (2004). 14. Y. J. Chen, J. H. Hsu, and H. N. Lin,“Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process”, Nanotechnology 16, 1112(2005). 15. J. M. Chen, S. W. Liao, and Y. C. Tsai,“Electrochemical synthesis of polypyrrole within PMMA nanochannels produced by AFM mechanical lithography”, Synthetic Metals 155, 11(2005). 16. C. Martin, G. Rius, X. Borrise, and F. Perez-Murano,“Nanolithography on thin layers of PMMA using atomic force microscopy”, Nanotechnology 16, 1016 (2005). 17. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope : Doping dependence and kinetics”, Appl. Phys. Lett. 67, 3144 (1995). 18. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, J. Vac. Sci. Technol. B 13, 2805 (1995). 19. I. F. Cuesta, X. Borrise, and F. P. Murano, “Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication”, Nanotechnology 16, 2731 (2005). 20. J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands : spontaneous formation of quantum wires”, Phys. Rev. Lett. 70, 2782 (1993). 21. S. H. Brongersma, M. R. Castell, D. D. Perovic, and M. Zinke-Allmang, “Stress-induced shape transition of CoSi2 clusters on Si(100)”, Phys. Rev. Lett. 80, 3795 (1998). 22. K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, and B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B 51, 14330 (1995). 23. D. J. Smith, P. A. Bennett, “Endotaxial silicide nanowires”, Phys. Rev. Lett. 93, 256102 (2004). 24. S. Y. Chen, L. J. Chen, S. D. Tzeng, and S. Gwo, “Epitaxial growth of NiSi2 on (001)Si inside nanoscale contact holes prepared by atomic force microscope tip-induced local oxidation of the thin Si3N4 layer”, J. Vac. Sci. Technol. B 23, 1905 (2005). 25. S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Appl. Phys. Lett. 87, 253111 (2005). 26. O. Chamirian, J.A. Kittl , A. Lauwers , O. Richard, M. van Dal, and K. Maex, “T hickness scaling issues of Ni silicide”, Microelectron. Eng. 70, 201 (2003). 27. F. Deng, R. A. Johnson, P. M. Asbeck, S. S. Lau,W. B. Dubbelday, T. Hsiao, and J. Woo, “Salicidation process using NiSi and its device application”, J. Appl. Phys. 81, 8047 (1997). 28. S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Appl. Phys. Lett. 87, 253111 (2005).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10453-
dc.description.abstract在半導體製程技術與奈米科技的發展中,微影技術一直是不可或缺的一環,而AFM微影的優點在於不需超高真空的環境,以簡單的步驟就能製作奈米元件,相當適合實驗室在奈米尺度微影的研究探討。且由於鈦矽化物有小線寬效應,而鈷矽化物則有矽消耗過多的問題,其中鎳矽化物並無其他兩者的缺點,因此本實驗第一部份選擇以鎳矽化物為研究主題,探討薄膜厚度對鎳矽化物生成之影響,第二部份則是利用原子力顯微鏡機械力微影製作鎳矽化物奈米結構,探討鎳奈米線高度及尺寸對鎳矽化物形成之影響。 矽基板上薄膜厚度對鎳矽化物生成之影響,研究結果顯示:鎳膜沉積厚度較薄會促進NiSi2相提早在低溫生成;而當鎳膜厚5 nm,經700℃ RTA退火後,鎳矽化物晶粒邊緣平行矽〈110〉與〈100〉方向;當鎳膜厚10 nm,經300、400℃RTA退火後,生成NiSi且磊晶成長於矽基板。 利用AFM微影製作鎳矽化物奈米線方面:在鎳奈米線高度為10 nm經400 ℃RTA,可以得到磊晶成長奈米線,而平行Si[110]與[100]方向奈米線其與矽基板界面關係均為Type-A。相較於在矽基板上蒸鍍10 nm鎳膜,其產生NiSi2的溫度提前,顯示尺寸縮小,亦促使NiSi2相提早生成。zh_TW
dc.description.abstractAtomic force microscope lithography is a ease method for the fabrication of nanometer-scale structures and adapts to investigate in laboratory. In addition, fine line effect experienced by Ti silicide formation in a very narrow feature and high silicon consumption in CoSi2 formation makes Ni silicide suitable as a candidate in replacing Ti and Co for deep submicro devices and nanodevices. Therefore, in the first part of this study, the effects of thickness of Ni ultrathin film on the formation of Ni silicide were studied. In the second part, the growth of silicide nanowires by AFM mechanical lithography was investigated. We focused on studying the effects of the size and orientation of Ni nanowires on the formation of Ni silicide nanowires. The results show as follows. The decrease of the thickness of Ni film induces the formation NiSi2 at low annealing temperature. For 5 nm Ni/Si(100) annealing at 500 and 600℃, the NiSi2 thin films with vacancy ordering structure were formed. When the sample annealed at 700℃, the NiSi2 clusters with facets, which are along Si<110> and Si<100> directions, were observed. For 10 nm Ni/Si(100) annealing at 300 and 400℃, the epitaxial NiSi thin film were formed. The epitaxial NiSi2 nanowires were formed when Ni nanowires with 10 nm height annealed at RTA 400℃. The NiSi2 nanowires, along Si<110> and Si<100> direction, grow into the substrate with a coherent type-A interface. The NiSi2 phase formation temperature in Ni nanowire / Si(100) samples was found to be lowered than that in Ni thin film / Si(100) samples. This indicates that the size reduction of Ni deposition can induce the formation of NiSi2.en_US
dc.description.tableofcontents摘要……………………………………………………………………..Ι Abstract…………………………………………………………………ΙΙ 圖目錄…………………………………………………………………VΙΙ 壹、緒論………………………………………………………………..1 1-1前言…………………………………………………………....1 貳、AFM基礎理論及文獻回顧………………………………………3 2-1原子力顯微鏡介紹…………………………………………….3 2-1-1原子力顯微鏡基本原理……………………………….3 2-1-2 原子力顯微鏡掃瞄模式………………………………4 2-2 文獻回顧……………………………………………………...6 2-2-1 利用原子力顯微鏡進行機械力微影…………………6 2-2-2 其他原子力顯微鏡微影技術…………………………7 2-2-3 金屬矽化物奈米結構…………………………………8 2-2-4 鎳金屬矽化物奈米結構………………………………9 2-3 研究動機與目的……………………………………………..10 参、實驗規劃與方法………………………………………………….12 3-1 實驗目的與內容……………………………………………..12 3-2 實驗步驟……………………………………………………..12 3-2-1矽基板上鎳層厚度對晶體結構之影響………………12 3-2-2利用AFM機械力微影術製作矽化物奈米線……......13 3-2-2-1 利用機械力微影製作奈米凹槽…............................13 3-2-2-2 利用機械力微影製作奈米溝槽…............................14 3-2-2-3 利用機械力微影製作矽化物奈米線…....................14 3-3 實驗與分析儀器……………………………………………...15 3-3-1 原子力顯微鏡(Atomic Force Microscope)…………...15 3-3-2 場發射掃瞄式電子顯微鏡( Field Emission-SEM )….15 3-3-3 高分辨穿透式電子顯微鏡(High Resolution-TEM )…16 3-3-4聚焦離子束與電子束顯微系統(Focused ion beam and electron beam System)……………………………..16 肆、結果與討論………………………………………………………..17 4-1 薄膜厚度對鎳矽化物生成之影響…………………………...17 4-1-1晶體結構分析……………………………………….....17 4-2 鎳奈米線之厚度、方向及線寬對鎳矽化物奈米線生成之影響………..................................................................................21 4-2-1利用原子力顯微鏡機械力微影製作鎳矽化物奈米結構..................................................................................21 4-2-1-1機械力微影作用力的估算………………………..22 4-2-1-2機械力微影作用力大小對深度的影響………….22 4-2-1-3製作不同線寬金屬奈米線………………………..24 4-2-2 鎳奈米線厚度對鎳矽化物生成之影響……………...24 4-2-3 鎳奈米線方向對鎳矽化物生成之影響……………...26 4-2-4 磊晶成長鎳矽化物奈米線…………………………...26 伍、結論………………………………………………………………..28 陸、參考文獻…………………………………………………………..72zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200714032000en_US
dc.subjectnanowiresen_US
dc.subject奈米線zh_TW
dc.titleEffects of thickness and size of Ni deposition on the formation of Ni silicide by AFM mechanical lithographyen_US
dc.title利用原子力顯微鏡機械力微影研究鎳膜厚度及尺寸對鎳矽化物形成之影響zh_TW
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.