Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10469
標題: 具有倒六角錐結構之高效率氮化銦鎵發光二極體的製作
Fabrication of the High Efficiency Light-Emitting Diodes With Hexagonal Inverted Pyramid Structures.
作者: Liu, Hsun-Chih
劉訓志
關鍵字: InGaN
氮化銦鎵
LED
發光二極體
出版社: 材料科學與工程學系所
引用: [1] S. Nakamura and G. Fasol, The Blue Laser Diode, (Springer, New York, 1997). [2] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2790 (1997). [3] E. Fred Schubert, Light-Emitting Diodes, (Cambridge, United Kingdom,2003). [4] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, 855 (2004). [5] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, ”Deep ultraviolet wet chemical etching of gallium nitride”, Appl.. Phys. Lett., 72, 939 (1998). [6] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett., 73, 2654 (1998). [7] M. S. Minsky, M. White, and E. L. Hu,” Room-temperature photoenhanced wet etching of GaN”, Appl. Phys. Lett., 68 ,1531 (1996). [8] C. Youtsey and I. Adesida, and G. Bulman,” Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71 ,2151 (1997). [9] C. Youtsey, L. T. Romano, and I. Adesida,“Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett., 73 ,797 (1998). [10] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc,“ Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett., 77 ,1227 (2000). [11] Hock M. Ng, Nils G. Weimann, and Aref Chowdhury,“GaN nanotip pyramids formed by anisotropic etching”, J. Appl. Phys., 94, 650 (2003). [12] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu,“Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride”, Appl. Phys. Lett., 84 ,3322 (2004). [13] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, ,” Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution”, J. Appl. Phys., 89 ,4142 (2001). [14] Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, “Electrodeless wet etching of GaN assisted with chopped ultraviolet light”, Appl. Phys. Lett., 84 ,3759 (2004). [15] C. Youtsey, L. T. Romano, R. J. Molnar, I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching”, Appl. Phys. Lett., 74 ,3537 (1999). [16] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc¸ and R. J. Molnar,” Dislocation density in GaN determined by photoelectrochemical and hot-wet etching”, Appl. Phys. Lett., 77 ,3532 (2000). [17] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht and P. R. Hageman,” Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN”, J. Appl. Phys., 90, 6105 (2001). [18] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul and S. P. Kilcoyne,” Wet chemical etching of AlN”, Appl. Phys. Lett. 67 ,1119 (1995). [19] C. Youtsey, G. Bulman, and I. Adesida, J. Eleltron. Mater. 27,282 (1998). [20] C. Youtsey, I. Adesida, and G. Bulman, Electron. Lett. 33, 245 (1997). [21] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu,” Development of selective lateral photoelectrochemical etching of InGaN’GaN for lift-off applications”, Appl. Phys. Lett. 78, l945 (2001). [22] P. Visconti, M. A. Reshchikov, K. M. Jones, D. F. Wang, R. Cingolani, H. Morkoc, R. J. Molnar, and D. J. Smith, J. Vac. Sci. Technol. B 19, 1328 (2001). [23] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu,” Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching”, Appl. Phys. Lett. 85 ,762 (2004). [24] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K. B. Chong, and X. Zhang, “Strong influence of SiO2 thin film on properties of GaN epilayers”, Appl. Phys. Lett. 74, 818 (1999). [25] Yoshitaka Nakano, Takashi Jimbo,” Interface properties of thermally oxidized n-GaN metal–oxide–semiconductor capacitors”, Appl. Phys. Lett. 82, 218 (2003). [26] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee and K. S. Chung, ” GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. 80, 446 (2002). [27] Yoshitaka Nakano and Tetsu Kachi, and Takashi Jimbo,” Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes”, Appl. Phys. Lett. 82, 2443 (2003). [28] Ching-Ting Lee, Hong-Wei Chen and Hsin-Ying Lee,” Metal oxide semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett. 82, 4304 (2003). [29] Choelhwyi Bae, Cristiano Krug, Gerald Lucovsky, Arpan Chakraborty and Umesh Mishra,” Work-function difference between Al and n-GaN from Al-gated n-GaN/nitrided-thin-Ga2O3 /SiO2 metal oxide semiconductor structures”, Appl. Phys. Lett. 84, 5413 (2004). [30] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett. 76, 511 (2000). [31] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken,”Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys. Lett. 76, 3923 (2000). [32] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee,” Bias-assisted photoelectrochemical oxidation of n-GaN in H2O”, Appl. Phys. Lett. 81, 1029 (2002). [33] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, J. S. Yun and K. S. Chung,” Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy”, Appl. Phys. Lett. 78 ,1309 (2001). [34]D. A. Stocker, E. F. Schubert, and J. M. Redwing, ”Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett. 73,2654 (1998). [35] D. A. Stocker, I. D.Goepfer, E. F. Schubert, K. S. Boutros, and J. M. Redwing,” Crystallographic wet chemical etching of p-type GaN”, Journal of Electrochemical Society,147(2)763-764(2000). [36] D. A. Stocker, E. F. Schubert, K. S. Boutros, and J. M. Redwing,”Fabrication of smooth GaN-based laser facets”,MRS Internet J. Nitride Semicond. Res. 4S1, G7.5 (1999). [37]S. S. Schad, M. Scherer, M. Seyboth, and V. Schwegler,”Extraction efficiency of GaN-baesd LEDs”, Phys. Stat. Sol. (a) 188, No.1,127-130 (2001). [38]U. Strauss, H. J. Lugauer, A. Weimar, J. Baur, G.. Bruderl, D. Eisert, F. Kuhn, U. Zehnder, and V. Harle, ”Progress of InGaN Light Emitting Diodes on SiC”, Phys. Stat. Sol. (c) 0, No.1, 276-279 (2002). [39]范姜世明,”氮化銦鎵透明導電氧化膜之光電元件應用與研究,國立台灣大學電子工程研究所碩士論文(2003). [40] Nils G. Weimann, Lester F. Eastman, Dharanipal Doppalapudi, Hock M. Ng, and Theodore D. Moustakas, “Scattering of electrons at threading dislocations in GaN”, JOURNAL OF APPLIED PHYSICS, E 83,3656 (1998). [41] 施敏,”半導體元件物理與製作技術”國立交通大學出版社。 [42] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux“From visible to white light emission by GaN quantum dots on Si(111)substrate.” Appl. Phys. Lett. 75, 962 (1999). [43] Koichi Tachibana, Takao Someya, Satomi Ishida, and Yasuhiko Arakawa “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature.” Appl. Phys. Lett. 76, 3212 (2000). [44] Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays.” NANO LETTERS Vol. 4, No. 6,1059-1062,(2004). [45] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys.” p. 110, Chapman & Hall, New York (1991). [46] M. A. Reshchikov, G. C. Yi, and B. W. Wessels,“Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities” Phys. Rev. B, 59, 13176 (1999). [47] C. Leey, J. E. Kimy, H. Y. Parky, S. T. Kimz, and H Limx, J. Phys.: Condens. Matter, 10, 11103 _1998_. [48] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 1, 36, 382 (1997). [49] L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 89, 4951 (2001). [50] A. P. Vajpeyi, S. J. Chua, S. Tripayhy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang, “High Optical Quality Nanoporous GaN Prepared by Photoelectrochemical Etching”, Electrochem. and Solid-State Lett.,8,G85-G88,(2005). [51] 陳政寰等,”奈米光柵之原理與應用”,機械工業雜誌 245 期。 [52] 黃戎巖等,”次波長繞射光柵簡介”,機械工業雜誌 245 期。 [53] Y. Gao, I. Ben-Yaacov, U. K. Mishra, and E. L. Hu,” Optimization of AlGaN/GaN current aperture vertical electron transistor (CAVET) fabricated by photoelectrochemical wet etching”, J. Appl. Phys. 96, 6925 (2004). [54] E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, “Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching”, Appl. Phys. Lett., 85, 5179 (2004). [55] M. S. Minsky et al “Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett.,68. pp. 1531-1533(1996). [56] H. Lu et al “Photoassisted anodic etching of GaN.”,J. Electrochem. Soc. 144. L8-L11(1997). [57]Lung-Han Peng et al,“Hydration Effects in the Photoassisted Wet Chemical Etching of Gallium Nitride”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 3, MAY/JUNE (1998). [58] A. P. Vajpeyi, S. J. Chua, S. Tripathy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang, Electrochem. Sol. Lett., 8, G85 (2005). [59] Chia-Feng Lin, Jing-Hui Zheng , Zhong-Jie Yang, and Jing-Jie Dai, Appl. Phys. Lett. 88, 083121 (2006). [60] Chia-Feng Lin, Jing-Jie Dai , Zhong-Jie Yang, Jing-Hui Zheng, and Shou -Yi Chang, Electrtrochem. Sol. Lett., 8(12)C185-C188(2005). [61] Hung-Wen Huang, C. F. Lai, W. C. Wang, T. C. Lu, H. C. Kou, S. C. Wang, R. J. Tsai, and C. C. Yu, Electrtrochem. Sol. Lett., 10(2)H59-H61 (2007). [62] Jun-Seok Ha, S. W. Lee, Hyun-Jae Lee, Hyo-Jong Lee, S. H. Lee, H. Goto, T. Kato, Katsushi Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process”, IEEE Photon. Technol. Lett., vol. 20, no. 3, pp.1041-1135, Feb. 2008. [63] D.Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butte, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers”, Appl. Phys. Lett., 92, 171102 (2008). [64] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, Senior Member, IEEE, C. S. Chang, and Y. Z. Chiou, “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides”, IEEE Photon. Tech. Lett., vol. 18, no. 23, pp.2517-2519, Dec. 1, 2006. [65] Kug-Seung Lee,a Chul Huh,b Ji-Myon Lee,c Eun-Jeong Kang,a and Seong-Ju Parkd,z, “Electrical and Optical Characteristics of InGaN/GaN Microdisk LEDs”, Electrtrochem. Sol. Lett., 8(3)G68-G70 (2005). [66] Chih-Chiang Kao, Hao-Chung Kuo, Member, IEEE, Hung-Wen Huang, Jung- Tang Chu, Yong-Long Hsieh, C. Y. Luo, Shing-Chung Wang, Member, IEEE, Chang-Chin Yu, and Chia-Feng Lin, “Light–Output Enhanc- ement in a Nitride-Based Light-Emitting Diode With 22o Undercut Sidewalls”, IEEE Photon. Tech. Lett., vol. 17, no. 1, pp.19-21, Dec. 1, 2005.
摘要: 在本論文中,利用光輔助電化學濕式蝕刻作用於氮化銦鎵發光二極體結構,在平台上無金屬覆蓋之透明導電膜內縮10μm區域蝕刻出奈米級的倒六角錐結構,並此發光元件的光性與電性加以探討。 在經過20分鐘的側蝕與1.5小時的N-face蝕刻處理後,在蝕刻平台上無金屬覆蓋之透明導電膜內縮區域可觀察到大量奈米級倒六角錐結構,其尺寸大小為高:154.7nm和基底寬度:206.4nm之倒六角錐結構,底部形成約10nm直徑之氮化銦鎵奈米盤結構,其形成機制可由發光層選擇性側向蝕刻和N-face蝕刻所組成,並根據Wulff理論,蝕刻穩定面是由最小表面積和表面能所組成。在氮化銦鎵量子井發光層之光激螢光光譜中,發現發光波長由460.5 nm藍移到452.5 nm,此8nm藍移量形成原因為:(1)氮化銦鎵量子井中壓電場效應因應力釋放而被減低,(2)倒角錐結構底部形成氮化銦鎵奈米盤結構而產生量子侷限效應。另外藉由Nd:YVO4固態脈衝雷射在不同光功率密度下的激發,可使HIP結構產生lasing的現象。 藉由快速側蝕與N-face蝕刻所形成的倒六角錐可以減少光在發光層中的全反射與吸收,並藉由光散射的效應增加發光二極體的出光量,而倒六角錐的波導效應使得發光二極體在正向43.2˚~144˚有較明顯光強度提升,發散角則由標準試片的166.1˚縮小為145.8˚。此光輔助電化學濕式蝕刻技術應用於氮化銦鎵發光二極體可有效提升發光元件之外部量子效率。
The higher light extraction efficiency of InGaN-based light emitting diodes (LED) have fabricated and analyzed in this thesis. The fabricated InGaN-based LED wafers are treated through a photoelectrochemical (PEC) wet etching process by using the Hg lamp as illumination light source and KOH solution. Nano-scaled self-assembled hexagonal inverted pyramids (HIP) structures were formed through the 20min PEC lateral etching process and 1.5hr N-face wet etching process. The HIP structure was consisted of the top 0.1μm-thick GaN:Mg layer and 50nm-thick InGaN active layer located on the stable Ga-face n-type GaN:Si layer. The photoluminescence (PL) intensity of MQW peak has a great enhancement in nano-scale HIP structures due to the nano-cavity confined effect and the total reflecting effect. The PL emission peaks of InGaN/GaN MQW structure are located at 460.5nm for standard LED (ST-LED) and 452.5nm for HIP LED, a 8nm blueshift phenomenon of the HIP-LED structure was observed that was caused by reduced the piezoelectric field. The internal quantum efficiency of an InGaN/GaN MQW active layer are slightly enhanced in this hexagonal inverted pyramids. The thermal activation energy of a HIP structure (76meV) is higher than the standard sample (56.2meV) analyzed from a temperature dependent PL measurement. At 20mA injection current, the light output power of HIP-LED had 62.4% enhancement compared with the ST-LED. The angular dependent of light-output intensity of the ST-LED and HIP-LED were measured at 20mA operating current. The light output intensity of the ST-LED at horizontal directions (the angles from 0° to 17° and 163° to 180°) was higher than the HIP-LED. The possible reason was caused by the horizontal emission light was scattered and extracted to normal direction through the HIP structures around the 10μm-width mesa-edge region.
URI: http://hdl.handle.net/11455/10469
其他識別: U0005-1307200723104400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307200723104400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.