Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10477
標題: 具有銅基板之砷化鎵太陽電池製作與特性研究
Fabrication and Characterization of GaAs Solar Cells on Copper Substrates
作者: Lin, Chiau-Jen
林喬楨
關鍵字: GaAs
砷化鎵
Solar Cell
Electroplating
Substrate transfer
太陽電池
電鍍技術
基板轉移
出版社: 材料科學與工程學系所
引用: [1] 黃建榮, 高效率太陽電池探討, 太陽能電池技術發展研討會, 民國97年. [2] http://svs.gsfc.nasa.gov/vis/a000000/a003400/a003464/ [3] Jeff Tollefson, “Countries with highest CO2-emitting power sectors (tones per year)”, Nature, vol. 450, pp. 327, 2007. [4] 翁谷松, 太陽光電材料產業現況與發展機會, 工業雜誌255期, 民國97年. [5] Sheila G. Bailey and Dennis J. Flood, “Space Photovoltaics”, Prog. Photovolt. Res. Appl., 6, pp. 1-14, 1998. [6] Brenton Burnett, “The Basic Physics and Design of III-V Multijunction Solar Cells”, the NREL’s III-V research, 2002. [7] Richard R. King et al., “Advances in High-Efficiency III-V Multijunction Solar Cells”, Advances in OptoElectronics, Article ID 29523, pp. 8, 2007. [8] R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., vol. 90, pp. 3, 2007. [9] J. F. Geisz et al., “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., vol. 91, Article ID 023502, 2007. [10] 葉昱昕, 由歐洲光電太陽能研討會(22th EU PVSEC)觀察太陽電池市場與技術趨勢(五), 材料世界網, 民國96年. [11] Tomoya Kodama et al., “Development of Space Solar Sheet ”, Technical Digest of the International PVSEC-17, Fukuoka, Japan , 6O-B11-03, 2007. [12] H. Yamaguchi et al., “Investigation on non-ohmic properties for thin film InGaP/GaAs solar cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, vol. 2, pp. 1805–1807, 2006. [13] T. Takamoto, et al., “Paper-Thin InGaP/GaAs Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, vol. 2, pp. 1769–1772, 2006. [14] D. M. Chapin, C.S. Fuller and G. L. Pearson, “A new p-n junction photocell for converting solar radiation into electrical power”, J. App. Phys., vol. 25, pp. 676-677, 1954. [15] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices”, 2001. [16] 蔡進譯, 超高效率陽電池, 物理雙月刊廿七卷五期,民國94年. [17] J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial Lift-Off for large area thin film III/V devices”, phys. stat. sol. (a) 202, No. 4, pp. 501–508, 2005. [18] 莊嘉琛, 太陽能工程, 全華科技圖書 ,民國86年. [19] J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen and E. Bongers, “Thin-film GaAs Epitaxial Lift-off Solar Cells for Space Applications”, Prog. Photovolt: Res. Appl., vol. 13, pp. 587–596, 2005. [20] 雷永泉, 新能源材料, 新文京開發出版社, 民國93年. [21] Henry W. Brandhorst, “Evolution of space solar cell and array technology for the next decade”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 6O-B11-01, 2007. [22] Sheila G. Bailey and Dennis J. Flood, “Space Photovoltaic”, Prog. Photovolt. Res. Appl., vol. 6, pp. 1-14, 1998. [23] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 民國91年. [24] 楊仕廉, 抗反射膜結構設計對InGaP/GaAs/Ge多接面太陽電池特性之探討, 吳鳳技術學院光機電暨材料研究所碩士論文, 民國95年. [25] 楊玉惠, 化合物半導體太陽電池之研究, 國立交通大學電子物理研究所碩士論文, 民國86年. [26] 施敏, 半導體元件物理及製作技術, 國立交通大學出版社, 民國90年. [27] Lawrence L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview”, Journal of Electron Spectroscopy and Related Phenomena, vol. 150, pp. 105–135, 2006. [28] G.F. Zheng, Z. Shi, R. Bergmann, X. Dai, S. Robinson, A. Wang, J. Kufianski, M.A. Green, “Thin film silicon solar cells on glass by substrate thinning”, Solar Energy Materials and Solar Cells, vol. 32, pp. 129-135, 1994. [29] William F. Smith, “Foundations of Materials Science and Engineering, 3e”, McGraw-Hill Education, 2005. [30] 陳立俊, 材料電子顯微鏡學, 國家實驗研究院儀器科技研究中心出版, 民國79年. [31] http://www.sciencetech-inc.com/ [32] http://www.olympusmicro.com/ [33] 陳頤承, 太陽電池量測技術, 工業材雜誌258期, 民國97年. [34] http://www.nandk.com/ [35] http://www.kla-tencor.com/ [36] J. W. Lee, S. J. Pearton et al., “Investigation of Wet Etching Solutions for In0.5Ga0.5P”, Solid-Slate Electronics, vol. 38, pp. 1871-1874, 1995. [37] J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, “Plasma and Wet Chemical Etching In0.5Ga0.5P”, J. Electron. Mater, vol. 21, pp. 441, 1992. [38] 鍾迪生, 真空鍍膜, 遼寧大學出版社, 民國90年. [39] G. J. Bauhuis et al., “Thin film GaAs solar cells with increased quantum efficiency due to light reflection”, Solar Energy Materials & Solar Cells, vol.83, pp. 81–90, 2004. [40] R. Brendel and H. J. Queisser, “On the thickness dependence of open circuit voltages of p-n junction solar cells”, Solar Energy Materials and Solar Cells, vol.29, pp. 397-401, 1993.
摘要: 要將太陽電池應用於太空上之應用,須兼備以下數點,如高效率,輕量化及抗輻射能力等特色。因此本論文將針對砷化鎵太陽電池的砷化鎵基板移除之後的元件特性進行探討,並利用基板轉移技術將砷化鎵太陽電池轉移到銅基板上,以達到薄型輕量化之目標。 本研究以濕蝕刻之方式將砷化鎵基板移除,並將已移除砷化鎵基板的薄膜砷化鎵太陽電池轉移到銅基板,銅基板則利用電鍍法形成。 轉移到銅基板的砷化鎵太陽電池的基極層厚則固定在3.5 μm及1.5 μm,基極層的厚度改變,將改變薄膜砷化鎵太陽電池的開路電壓和短路電流特性。在無抗反射膜條件下,基極層厚度為3.5 μm時,砷化鎵基板太陽電池之電流密度為15.3 mA/cm2,元件轉換效率為9.17% ;銅基板太陽電池之電流密度為15.7 mA/cm2,元件轉換效率為9.8%。當基極層厚度為1.5 μm時,砷化鎵基板太陽電池之電流密度為14.9 mA/cm2,元件轉換效率為9.5%;銅基板太陽電池之電流密度為15.2 mA/cm2,元件轉換效率為9.55%。從這些結果顯示了我們可以成功地將砷化鎵太陽電池之砷化鎵基板用濕式蝕刻移除並結合電鍍銅製程,如此可完成具有銅基板之砷化鎵太陽電池,同時因為我們在砷化鎵磊晶膜與銅基板間有鍍上一層金/鍺-金反射鏡面,所以可能由於入射光的利用率增加而導致電池轉換效率有少許的改善。
Space photovoltaics (PVs) have been dominated by several characteristics such as high efficiency, light weight, thin thickness and high radiation resistance. In our experimental range, the base layer thickness was found to have a large effect of the performance of GaAs solar cells in terms of the open circuit voltage, short circuit current (Isc) and conversion efficiency (η). The substrate thickness effect on the performance of GaAs solar cell was also investigated, where the GaAs substrate was thinned or removed via a wet chemical etching process. After removing the GaAs substrate, the residual GaAs photovoltaic epilayer was transferred to a Cu substrate using an electroplating technique. For the GaAs PV structure (no antireflection coating) with a base layer thickness of 3.5 μm, the Jsc can increase from 15.3 to 15.7 mA/cm2 and the η from 9.17 to 9.80% after the PV epilayer is transferred to a Cu substrate. Similarly, for the sample with a 1.5-μm-thick base layer, the Jsc increases from 14.9 to 15.2 mA/cm2 and the η from 9.5 to 9.55% after the PV epilayer is transferred to a Cu substrate. These results indicate that the GaAs substrate in the present GaAs PV structure can be successfully replaced by the copper substrate using a combination of electroplating and wet etching processes. A little improvement in efficiency of the GaAs/Cu solar cell was found and could be attributed to the insertion of a Au-Ge-Au mirror at the GaAs/Cu interface.
URI: http://hdl.handle.net/11455/10477
其他識別: U0005-1508200703340500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508200703340500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.