Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10481
標題: 水熱法合成二氧化矽奈米葉片及其在光激光譜儀之藍光現象
Hydrothermal synthesis of Silica nanoblades and their blue luminescence
作者: Lai, Chien-Lung
賴建隆
關鍵字: 水熱法
二氧化矽
光激光譜儀
Hydrothermal
Silica
光激光譜儀
出版社: 材料科學與工程學系所
引用: 1.S. Iijima, Nature, 354, 56(1991) 2.Y. D. Glinka, Phys. Rev. B, 62, 4733(2000) 3.B. Yao, D. Fleming, M. A. Morris, Chemistry of Materials, 16, 4851, (2004) 4.C. Y. Wang, L. H. Chan, D. Q. Xiao, J. Vac. Sci. Technol. B, 24, 613(2006) 5.Y. W. Wang, C. H. Liang, G. W. Meng, J. Mater. Chem., 12, 651(2002) 6.Z. J. Zhang, G. Ramanath, P. M. Ajayan, Adv. Mater., 13, 197(2001) 7.Y. Q. Zhu, W. K. Hsu, M.Terrones, J. Mater. Chem., 8, 1859(1998) 8.T. Ichinohe, D. Kenmochi, H Morisaki H, Thin Solid Films, 377, 87,(2000) 9.L. Wang, R. Stevens, A. Malik, Microelectronic Engineering, 84, 1190(2007) 10.A. Oowadaa, M. Takeuchi, Y. Sakai, Journal of Vacuum Science & Technology B, 26, 876(2008) 11.N. Y. Tang, X. M. Wu, L. J. Zhuge, Journal of Materials Science, 37, 2259(2002) 12.J. Niu, J. Sha, N. Zhang, Physica E, 23, 1(2004) 13.H. F. Zhang, C. M. Wang, E. C. Buck, Nano. Lett., 3, 577(2003) 14.D. P. Yu, Q. L. Hang, Y. Ding, Appl. Phys. Lett., 73, 3076(1998) 15.C. N. R. Rao, G. Gundiah, F. L. Deepak, J. Mater. Chem., 14, 440(2004) 16.M. Zhang, Y. Bando, K. Wada, J. Mater. Sci. Lett.,18, 1911(1999) 17.Y. Q. Zhu, W. B. Hu, W. K. Hsu, Adv. Mater. 11, 844(1999) 18.F. Marlow, D. Zhao, B. F. Chmelka, Adv. Mater., 11, 632(1999) 19.賴宏仁博士,國立中興大學,2006奈米材料課程教材 20.http://www.nhn.ou.edu/cspin/research/nuggets/nugget2.html 21.R. Kubo, J. Phys. Soc. Jpn. 17, 975(1962) 22.J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., 32, 435(1999) 23.M. Terrones, W. K. Hsu, H. W. Kroto, Walton Topics in Current Chemistry, 199, 189(1999) 24.奈米電子共同實驗室使用者聯盟Newsletter電子報,第2期,2003 25.W. B. Hhoi., Appl. Phys. Lett., 75, 3129(1999) 26.J. Kong, M. G. Chapline, H. Dav, Adv. Mater., 13, 1384(2001) 27.T. Rueckes, K. Kim, E. Joselevich, Science, 289, 94(2000) 28.R. E. Smally, H. Dai, J. H. Hafiner, Nature, 384, 147(1996) 29.Y. Kondo, Kunio Takayangi, Science, 289, 606(2000) 30.M. Barbic, J. J. Mock. D. R. Smith, J. Appl. Phys., 91, 9341(2002) 31.S. Michtotte, S. M. Tempfli, L. Piraux, Appl. Phys. Lett., 82, 4119(2003) 32.A. Sugawara, T. Coyle, Appl. Phys. Lett., 70, 1043(2001) 33.M. N. Ou, S. R. Harutyunyan, S. J. Lai, phys. stat. sol. B, 244, 4512(2007) 34.陳貴賢 、吳季珍, 物理雙月刊, 23, 6(2001) 35.吳哲耀,國立中興大學,碩士論文,2006 36.蔡鎮燦,國立中興大學,碩士論文,2007 37.R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89(1964) 38.D. Whang, S. Jin, Y. Wu, Nano Lett., 3, 1255(2003) 39.S. Pavasupreea, Y. Suzukia, A. Kitiyanana, Journal of Solid State Chemistry, 178, 2152(2005) 40.A. El Goresy, L. Dubrovinsky, T. G. Sharp, Science 288, 1632(2000) 41.王執明, "肺症所關切的礦石-矽石類礦物",行政院勞工委員會,1989 42.何永鈞博士,國立中興大學,2006非晶形材料課程教材 43.Y. Lu, Y. Yang, A. Sellinger, Nature 410, 913(2001) 44.S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era Volume 1”, 119(1986) 45.H. Nishikawa, T. Shiroyama, R. Nakamura, Phys. Rev. B, 45, 586(1992) 46.Mary E. Gimon-Kinsel, Kathy Groothuis, Microporous and Mesoporous Materials, 20, 67(1998) 47.L. S. Liao, X. M. Bao, X. Q. Zheng, Appl. Phys. Lett., 68, 5(1996) 48.J. Zhang, F. Jiang, Y. Yang, J. Cryst. Growth, 307, 76(2007) 49.J. Hu, Y. Jiang, X. Meng, Small, 4, 429(2005) 50.C. H. Liang, L. D. Zhang, G. W. Meng, J. Non-Cryst. Solids 277, 63(2000) 51.Y. J. Chen, J. B. Li and J. H. Dai, Chem. Phys. Lett., 344, 450(2001) 52.C. Ye, L. Zhang, X. Fang, Adv. Mater., 16, 1019(2003) 53.Z. W. Pan, Z. R. Dai, C. Ma, J. AM. CHEM. SOC., 124, 1817(2002) 54.P. Wu1, X. Zou, L. Chi, Nanotechnology 18, 125601(2007) 55.Y. Xi, C. G. Hu, X. Y. Han, Y. F. Xiong, Solid State Communications, 141, 506(2007) 56.林克偉博士,國立中興大學,2006真空技術課程教材 57.K. S. Wenger, D. Corun, F. Chassagneux, J. Mater. Chem.,13, 3058(2003) 58.Y. Zhang, N. Wang, R. He, J. Cryst. Growth, 233, 803(2001) 59.S. h. Sun, G. W. Meng, T. Gao, Appl. Phys. A, 76, 999(2003) 60.T. Guo, P.Nikolaev, A.Thess, Chem. Phys. Lett., 243, 49(1995) 61.X. C. Wu, W. H. Song, K. Y. Wang, Chem. Phys. Lett., 336, 53(2001) 62.S. Kar, S. Chaudhuri, Solid Sate Comun., 133, 151(2005) 63.M. Zhang, E. Ciocan, Y. Bando, Appl. Phys. Lett., 80, 491(2002) 64.E. I. Givargizov, J. Cryst. Growth 31, 20(1975) 65.A. M. Morales, C. M. Lieber, Science, 279, 208(1998) 66.D. C. Bell Y. WU, C. J. Barrelet, Microscopy Research and Technique, 64, 373(2004) 67.K. H. Lee, S. W. Lee, Chemical Physics Letters, 376. 498(2003) 68.S. T. Lee, N. Wang, Y. F. Zhang, MRS Bulletin, 24, 36(1999) 69.W. S. Shi, H. Y. Peng, N. Wang, S. T. Lee, J. Am. Chem. Soc., 123, 11095(2001) 70.S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng. A, 286, 16(2000) 71.S. T. Lee, Y. F. Zhang, N. Wang, J. Mater. Res., 14, 4503(1999) 72.R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater., 15, 635(2003) 73.W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci., 26, 62(1968) 74.L. Vayssières, C. Chanéac, E. Tronc, Journal of Colloid and Interface Science, 205, 205(1998) 75.H. Ohgi, T. Maeda, E. Hosono, Crystal Growth & Design, 5, 1079(2005) 76.J. M. Wu, B. Huang, M. Wang, J. Am. Ceram. Soc., 89, 2660 (2006) 77.X. Gao, X. Li, W. Yu, Journal of Solid State Chemistry 178, 1139 (2005) 78.G. Shen, Y. Bando, C. Tang, J. Phys. Chem. B, 110, 7199(2006) 79.A. Yoshio, T. Hideto, S. Katsutaka, Jan. J. Appl. Phys., 37, 4482(1998) 80.R. Tohmon, Y. Shimogaichi, H. Mizuno, Phys. Rev. Lett., 62, 1388(1989) 81.Mary E. Gimon-Kinsel, Kathy Groothuis, Microporous and Mesoporous Materials, 20, 67(1998)
摘要: 本實驗是以水熱法來合成出大面積的SiO2 奈米葉片。實驗結果發現,退火過後SiO2 / Si基板放入TEOS、(NH2)2CO和NaOH的水溶液中,在95 oC,置放24小時,可以順利合成出一維二氧化矽奈米葉片。葉片的寬度約為100~300 nm,長度則在10 μm以上。透過電子穿透顯微鏡(TEM)、X光繞射儀(XRD)及光電子光譜儀(XPS)來探討它的結構及組成,證實了奈米葉片為非晶的SiO2結構。由光激光譜儀(PL)可以發現,經由水熱法所成長的SiO2 奈米葉片在325 nm的激發光照射下可以發出410和440 nm的高強度藍光,藍光發光原因是由於葉片中含有許多氧的空缺所引起的,並且PL的強度會隨著製程溫度的減少而提高。因此,SiO2奈米葉片有非常大的潛力應用於光電元件上面。
We reported large-scale synthesis of silica nanoblades by the hydrothermal method. The aqueous solution consisting of TEOS and (NH2)2CO in the presence of NaOH could form nanoblades of SiO2 on the Si wafer with a SiO2 buffer layer at 95℃ for 24 hours. The typical widths of the nanoblade were about 100 to 300 nm and the lengths were up to 10 μm. The transmission electron microscopy(TEM), X-ray diffraction(XRD)and x-ray photoelectron spectroscopy(XPS)were employed to characterize the samples. The results indicated that nanoblades structure in the form of amorphous silica. The photoluminescence(PL)spectrum of silica nanoblades showed strong blue emission peaked at 410 and 440 nm under 325 nm excitation wavelength. A blue light emission was observed which could be attributed to oxygen vacancies formed in the nanoblades. According to reducing process temperature, PL intensity would be increased. Therefore, the silica nanoblades may have potential applications for optoelectronic devices.
URI: http://hdl.handle.net/11455/10481
其他識別: U0005-1907200715462200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907200715462200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.