Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10499
標題: The effect of vibration welding in Ti-6Al-4V microstructure of weld metal
震動銲接對於Ti-6Al-4V銲道顯微組織之影響
作者: 吳泰發
Wu, Tai-Fa
關鍵字: Ti-6Al-4V
同步震動銲接
出版社: 材料科學與工程學系所
引用: [1] 張喜燕、趙永慶、白晨光,鈦合金及應用,化學工業出版社,第49-207頁,民國94年。 [2] 萊茵斯、皮特爾斯,鈦與鈦合金,化學工業出版社,第13-356頁,民國94年。 [3] 彼得.哈森,材料的相變,科學出版社,第301-362頁,民國87年。 [4] 謝成木,鈦及鈦合金鑄造,機械工業出版社,第57-64頁,民國94年。 [5] 劉偉隆、林淳杰、曾春風、陳文照 編譯,物理冶金,全華科技圖書股份限公司,第21-44頁,民國93年。 [6] 郝士廉、劉棟樑,專科物理學(下冊),台北市東華書局,第7-8頁,民國82年。 [7] 石紹明,物理學(上),徐氏基金會,第430-431頁,民國66年。 [8] 鄭安華,“鈦合金的馬氏體相變”,上海有色金屬,第20卷,第4期,第193-199頁,民國88年。 [9] 王剛、徐東生、楊銳,“TI-6AL-4V合金中片層組織形成的相場模型”,物理學報,第58卷,第s343-s347頁,民國98年。 [10] 韓忠,“鈦合金銲接冶金研究進展”,材料科學與工程,第18卷,第4期,第107-110頁,民國89年。 [11] 常輝、周廉、張廷杰,“鈦合金固態相變的研究進展”,稀有金屬材料與工程,第36卷,第9期,第1505-1510頁,民國96年。 [12] 賴銘祥、吳威德、郭飛虎、楊燦楠,“振盪技術在銲接上的應用”,銲接與切割,第7卷,第1期,第72-76頁,民國86年。 [13] 林義成,“減少銲件殘留應力之方法簡介”,機械技術,第48期,第48-58頁,民國78年。 [14] 廖信智,“不同振盪頻率對殘留應力消除之研究”,國立中興大學精密工程研究所,碩士論文,民國95年。 [15] 郭哲瑋,“同步震動銲接之特性與機構研究”,國立中興大學材料工程與科學學系,博士論文,民國97年。 [16] 管建軍、宋天民、張國福、尹成江,“機械振動對焊接熔池金屬凝固過程的影響”,撫順石油學院學報,第21卷,第4期,第51-54頁,民國90年。 [17] 賴建宏,“AISI304不銹鋼在不同頻率下震動銲接之研究”,國立中興大學材料工程與科學學系,碩士論文,民國97年。 [18]張德芬、宋天民、陳孝文、張國福、尹成江、管建軍,“機械振動焊接對殘餘應力的影響及機理分析”,撫順石油學院學報,第21卷,第1期,第53-56頁,民國90年。 [19]張國福、宋天民、尹成江、管建軍,“機械振動焊接對焊縫及熱影響區金相組織的影響”,銲接學報,第22卷,第3期,第85-87頁,民國90年。 [20] R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook:Titanium Alloys, ASM International, pp. 1-633, 1994 [21] K. Masubuchi, Metal Handbook, ed.9, ASM, ed. 6, pp. 856-895. [22] Metals handbook,Vol.6,Welding,Brazing,and Soldering,ed.9, pp. 892. [23] B. D. Cullity, Elements of X-Ray Diffraction, ed. 2, Addison Wesley, London, pp. 285-292, 1978. [24] J. S. Montgomery, M. G. H. Wells, B. Roopchand, and J. W. Ogilvy, “Low Cost Titanium Armors for Combat Vehicles,” JOM, Vol. 49, No. 5, pp. 45-47, 1997. [25] J. W. Elmer, T. A. Palmer, S. S. Babu, and E. D. Specht, “In Situ Observations of Lattice Expansion and Transformation Rates of α and β Phases in Ti–6Al–4V,” Materials Science and Engineering A, Vol. 391, pp. 104–113, 2005. [26] D. G. Lee, S. Lee, and C. S. Lee, “Quasi-Static and Dynamic Deformation Behavior of Ti–6Al–4V Alloy Containing Fine α2-Ti3Al Precipitates,” Materials Science and Engineering A, Vol. 366, pp. 25–37, 2004. [27] T. Ahmed, and H. J. Rack, “Phase Transformations During Cooling in α+β Titanium Alloys,” Materials Science and Engineering A, Vol. 243, pp. 206–211, 1998. [28] S. M. Kelly, Ph. D. Thesis:“Characteriztion and Thermal Modeling of Laser Formed Ti-6Al-4V,” Department of Materials Science and Engineering, Faculty of the Virginia Polytechnic Institute, 2002. [29] S. Malinov, P. Markovsky, W. Sha, and Z. Guo, “Resistivity Study and Computer Modelling of The Isothermal Transformation Kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08Si Alloys,” Journal of Alloys and Compounds, Vol. 314, pp. 181–192, 2001. [30] R. Pederson, Ph. D. thesis: ”Microstructure and Phase Transformation of Ti-6Al-4V,” Lulea University of Technology,Department of Applied Physics and Mechanical Engineering Division of Engineering Materials ,2002. [31] J. S. Tiley, M. S. thesis: “Modeling of Microstructure Property Relationships in Ti-6Al-4V,” Material Science Department, The Ohio State University, 2002. [32] F. J. Gil, M. P. Ginebra, J. M. Manero, and J. A. Planell, “Formation of α-Widmanstatten Structure:Effects of Grain Size and Cooling Rate on The Widmanstatten Morphologies and on The Mechanical Properties in Ti6Al4V Alloy,” Journal of Alloys and Compounds, Vol. 329, pp. 142–152, 2001. [33] F. J. Gil, J. M. Manero, M. P. Ginebra, and J. A. Planell, “The Effect of Cooling Rate on The Cyclic Deformation of β-annealed Ti-6Al-4V,” Materials Science and Engineering A, Vol. 349, pp. 150-155, 2003. [34] J. W. Elmer, and T. A. Palmer, “Phase Transformation Dynamics During Welding of Ti–6Al–4V,” Journal of Applied Physics, Vol. 95, No. 12, pp. 8327-8339, 2004. [35] E. Akman, A. Demir, T. Canel, and T. Sınmazc, “Laser Welding of Ti6Al4V Titanium Alloys,” Journal of Materials Processing Technology, Vol. 209, pp. 3705-3713, 2009. [36] F. Karimzadeh, A. Ebnonnasir, and A. Foroughi, “Artificial Neural Network Modeling for Evaluating of Epitaxial Growth of Ti-6Al-4V Weldment,” Materials Science and Engineering A, Vol. 432, pp. 184–190, 2006. [37] P. A. Kobryn, and S. L. Semiatin, “Microstructure and Texture Evolution During Solidification Processing of Ti–6Al–4V,” Journal of Materials Processing Technology, Vol. 135, pp. 330–339, 2003. [38] M. Balasubramanian, V. Jayabalan, and V. Balasubramanian, “Effect of Microstructure on Impact Toughness of Pulsed Current GTA Welded α–β Titanium Alloy,” Materials Letters, Vol. 62, pp. 1102–1106, 2008. [39] S. H. Wang, M. D. Wei, and L. W. Tsay, “Tensile Properties of LBW Welds in Ti–6Al–4V Alloy at Evaluated Temperatures Below 450℃,” Materials Letters, Vol. 57, pp. 1815–1823, 2003. [40] S. H. Wang, and M. D. Wei, “Tensile Properties of Gas Tungsten Arc Weldments in Commercially Pure Titanium, Ti–6Al–4V and Ti–15V–3Al–3Sn–3Cr Alloys at Different Strain Rates,” Science and Technology of Welding and Joining, Vol. 9, No. 5, pp. 415-422, 2004. [41] S. Sundaresan, G. D. JanakiRam, and G. M. Reddy, “Microstructural Refinement of Weld Fusion Zones in α+β Titanium Alloys Using Pulsed Current Welding,” Materials Science and Engineering A, Vol. 262, pp. 88–100, 1999. [42] W. A. Baeslack, and C. M. Banas, “A Comparative Evaluation of Laser and Gas Tungsten Arc Weldments in High-Temperature Titanium Alloys,” Welding Research Supplement, pp. 121s-130s, 1981 [43] N. K. Babu, S. G. S. Raman, R. Mythili, and S. Saroja, “Correlation of Microstructure with Mechanical Properties of TIG Weldments of Ti–6Al–4V Made With and Without Current Pulsing,” Materials Characterization, Vol. 58, pp. 581–587, 2007. [44] M. Balasubramanian, V. Jayabalan, and V. Balasubramanian, “Effect of Microstructure on Impact Toughness of Pulsed Current GTA Welded α–β Titanium Alloy,” Materials Letters, Vol. 62, pp. 1102–1106, 2008. [45] W. A. Baeslack, and D. L. Hallum, “Nature of Grain Refinement in Titanium Alloy Welds by Microcooler Inoculation,” Weld. J., Vol.69, pp. 326s-336s, 1990. [46] J. G. Garland, “Metallurgy,” Metal. Constr. Br. Weld. J. ,Vol. 6, pp. 121–127, 1974. [47] S. Sundaresan, G. D. J. Ram, G. M. Reddy,“Microstructural Refinement of Weld Fusion Zones in α-β Titanium Alloys Using Pulsed Current Welding,” Mater Sci Eng A , Vol. 262, pp. 88–100, 1999. [48] G. Gnirss, “Vibration and Stress Relief-Historical Development, Theory and Practical Application,” Indian Welding Journal, Vol. 22, pp. 11-16, 1990. [49] E. Enke, “Stress Relieving by Vibration,” Maschinenmarkt, Vol. 61, pp. 37-38, 1955. [50] H. Buhler, and H. Pfalzgraf, “Discussion on the Reduction of Residual Stress in Workpieced Made of Cast Iron,” Weristati und Betrieb, Vol. 171, pp. 36-43, 1964. [51] H. Buhler, and H. G. Pfaizgraf, “Investigations Into the Removal of Internal Stress in Cast Iron and Steel by Mechanical Vibration and Continued Holding in the Atmosphere,” V. D. I. Verlag, pp. 56, 1962. [52] H. Buhler, and H. G. Pfaizgraf, “Investigations into The Reduction of Residual Gelding Stresses by Alternating Stress Tests or Mechanical Vibration,” Inst. of Machine Tools and Shaping Technology of the University, Hanover. Schweisse and Schreiden, Vol. 16, No. 5, 1964. [53] H. Buhler, and H. G. Pfaizgraf, “Relief of Casting Stresses by Jotting: Part 1,” Foundry Trade Journal, Vol. 118, pp. 567-569, 1965. [54] I. K. Lokshin, “Vibration Treatment and Dimensional Stabilization of Casting,” Russian Castings Production, pp. 454-456. 1965. [55] V. M. Sagalevich, and A. M. Meisler, “Eliminating Welding Strains and Stresses in Sheet Constructions by Vibration Under Load,” Svar Proiz, Vol.9, pp.1-4, 1971. [56] Bonal Technologies, Inc., “Meta-Lax Stress Relief Procedure”, 1997. [57] G. August, and J. Hebel, “Subresonant Vibrations Relieve Residual Stress,” Metal Progress, Vol. 128, pp. 51-55, 1985. [58] R. Dawson, and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of It ‘s Effectiveness,” Journal of Engineering Materials and Technology, Vol. 102, pp. 169-176, 1980. [59] C. A. Walker, A. J. Waddell, and D. J. Johnston, “Vibratory Stress Relief-An Investigation of The Underlying Processes,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 209, pp. 51-58, 1995. [60] E. Klotzbucher, and H. Kraft, “Residual Stresses in Science and Technology,” DGM Metallurgy Information, USA, pp. 959, 1987. [61] G. P. Wonzney, and G. R. Crawmer, “An Investigation of Vibrational Stress Relief in Steel,” Welding Research Suppl., Vol. 47, No. 9, pp. 411s-419s, 1968. [62] R. W. Landgraf, M. J. Dean, and T. Endo, “Determination of the Cyclic Stress-Strain Curves,” Annual Meeting of American Society for Testing and Materials, 1967. [63] V. M. Radhakrishnan, and C. R. Prasad, “Relaxation of Residual Stress With Fatigue Loading,” Engineering Fracture Mechanics, Vol. 8, pp. 593-597, 1976. [64] M. C. Sun, “The Vibratory Stress Relief of A Marine Shafting of 35 Bar Steel,” Materials Letters, Vol. 58, pp. 299-303, 2004. [65] W. Wu, “Mechanical behavior of vibration-arc-welded alloy 690,” Materials transactions, Vol. 40, pp. 1456-1460, 1999. [66] W. Wu, D. Y. Lin, and S. H. Chen, “Mechanical Properties of Weldment Affected by Various Vibration Frequencies,” Journal of Materials Science Letters, Vol. 18, pp. 1829-1831, 1999. [67] B. Wei, “Undirectional Dendritic Solidification Under Longitudinal Resonant Vibration,” Acta metal, Vol. 40, pp. 2739-2751, 1991. [68] G. Gnirss, “Vibration and Vibratory Stress Relief:Historical Development,Theory and Practical Application,” Welding in The World, Vol. 26, pp.284-291,1988. [69] J. O. Peters, and G. Lutjering, “Comparison of the Fatigue and Fracture of α+β and β Titanium Alloys,” Metallurgical and Materials Transactions A, Vol. 32, pp. 2805-2818, 2001. [70] http:www.meta-lax.com/index.html
摘要: 由於Ti-6Al-4V在銲接後所產生的殘留應力會導致材料使用壽命的降低,並且由於銲接時產生的入熱量以及Ti-6Al-4V本身材料的成核速度極為緩慢,約為鋼鐵的百分之一,導致銲接後銲道產生粗大的初始β相柱狀晶,銲道的粗大柱狀晶形貌也會導致延展性與衝擊韌性的下降。為了改善Ti-6Al-4V銲接後的銲道殘留應力,本研究分別以四組不同條件,無震動、45.4Hz、74Hz與76.9Hz進行Ti-6Al-4V合金同步震動銲接。 經由顯微結構觀察顯示,同步震動銲接可以使Ti-6Al-4V銲接過程中凝固析出的初始β相柱狀晶細化,並且在共振頻76.9Hz時,細化的效果達到最佳,細化程度達到11.7%,但是與304不銹鋼相比(33.6%),細化效果並不明顯,這是因為Ti-6Al-4V的成核速度只有鋼鐵的百分之一所造成。 而由掃描式電子顯微鏡觀察擴散轉變α相的寬度以及藉由影像分析α’的含量,可以發現震動的施加與否並不會改變α相的寬度及α’的含量,由此說明同步震動銲接對於Ti-6Al-4V銲道固態相變化階段幾乎沒有影響。由於α相與α’相的相變化均是在固態狀況下相變,而震動對於固態狀態的銲道並沒有顯著的影響,導致震動對於α相的寬度以及α’的含量沒有影響。此外由於α’含量不受震動的影響,因此同步震動銲接對Ti-6Al-4V銲道中心的硬度值也沒有明顯的改變。 殘留應力的量測結果顯示,同步震動銲接能有效地消除殘留應力,並且隨著震動振幅的增加,可以導致產生微觀塑性變形的區域增加,應力消除的效果更明顯。殘留應力在無震動銲接的條件下為268MPa,當震動振幅很小時,如0.016mv(45.4Hz)時,殘留應力為266MPa,與無震動銲接相比較發現在0.016mv下進行同步震動銲接,殘留應力幾乎沒有消除效果,當振幅增加到0.26mv(74Hz)時殘留應力為177MPa,應力消除效果增加,而在共振頻(76.9Hz)時由於震動振幅最大(0.59mv)而有最大的殘留應力消除效果,殘留應力為97MPa。 由X-ray繞射分析發現同步震動銲接後,繞射峰的半高寬有增加的趨勢。實驗數據顯示了震動導致半高寬增加的現象,半高寬的增加說明了三種可能的代表意義,亦即(1)震動導致晶粒細化、(2)震動導致不均勻應變變大或是(3)震動導致疊差的產生。配合顯微結構的觀察可以排除晶粒大小的影響,加上殘留應力的結果顯示,不均勻的應變也不是造成半高寬增加的原因,因此可以判斷同步震動銲接後極有可能造成疊差增加。
The residual stress can induce the life of materials after welding and existence of the coarse prior β grain in the fusion zone of the Ti-6Al-4V. Four various vibration frequencies(Without vibration、45.4Hz、74Hz and 76.9Hz) were selected in this study in order to improve the residual stress. Experimental results indicated that the β grain can be refined by vibration welding. The effect of refinement is better (refinement percentage is 11.7%) when vibration welding with resonance frequency (76.9Hz). Because the nucleation rate in Ti-6Al-4V is smaller than 304 stainless steel, so refinement is not obvious in Ti-6Al-4V when compare to 304 stainless steel(refinement percentage is 33.6%). Furthermore, the width of α phase and the content of α’ phase do not change. Therefore, it had no effect for the solid state phase transformation of the Ti-6Al-4V after vibration welding. From these reasons, it also had no effect with the hardness of the Ti-6Al-4V. The result of measurement of the residual stress indicated that the residual stress can be eliminated efficiently by vibration welding. Because increasing vibration amplitude will increase plastic deformation region and reduce residual stress , so the removed effect increased when the vibration amplitude were increased. Besides, it had a better effect with resonance frequency(76.9Hz). The X-ray diffraction results show that FWHM (full width half maximum) can be increased at the same time after vibration welding. The FWHM increasing show three possible result , (1)vibration welding reduce grain size , (2)vibration welding increase nonuniform strain , (3)vibration welding increase stacking fault. With SEM microstructure study shows increasing FWHM is unconcerned with grain size. However, nonuniform strain is not a increasing reason to the FWHM from X-ray residual stress analysis. It can be conjectured that the increased result of the FWHM is because of the increase of the stacking fault.
URI: http://hdl.handle.net/11455/10499
其他識別: U0005-2107200710104700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107200710104700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.