Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10521
標題: 多壁奈米碳管/聚苯乙烯奈米複合材料混煉之研究
A Study on Compounding of Multi-walled Carbon Nanotube/Polystyrene Nanocomposites
作者: 陳明坤
Chen, Ming-Kun
關鍵字: Polystyrene
聚苯乙烯
multi-walled carbon nanotubes
electrical properties
多壁奈米碳管
電性質
出版社: 材料科學與工程學系所
引用: 1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Crul and R. E. Smalley. Nature, 1985; 318: 162. 2. S. Iijima. Nature, 1991; 354: 56. 3. T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber. Nature, 1998; 391: 62. 4. M. S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon, 1995; 33: 883. 5. J. C. Charlier, J. P. Issi, Appl. Phys. A, 1998; 67: 79. 6. M. D. Haus, G. Dresselhaus, P. Eklund, R. Saito. Phys. World, 1998; 33: 783. 7. J. W. Mintmire, C. T. White. Appl. Phys. A, 1998, 67: 65. 8. S. Iijima and T. Ichlhashi. Nature, 1993; 363: 603. 9. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez. Nature, 1993; 363: 605. 10. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle and S. Lefrant. Nature, 1997; 388: 756. 11. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith. Chemical Physics Letters, 1999; 313(1-2): 91. 12. Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen and J. H. Wang. Applied Physics Letters, 1999; 75(8): 1086. 13. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal. Science, 1998; 282: 1105. 14. H.J. Lai, M.C.C. Lin, M.H. Yang, A.K. Li. Materials Science and Engineering, 2001; 16. 15. B. I. Yakobson, R. E. Smalley. American Scientist, 1997; 85: 324. 16. L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu. Carbon. 2001; 39: 329. 17. R. Kamalakaran, M. Terrones, T. Seeger, Ph. M. Kohler-Redlich, Ruhle, Y. A. Kim, T. Hayashi, M. Endo. Appl. Phys. Lett, 2000; 77: 3385. 18. X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu. Chem. Phys. Lett. 2002; 362: 285. 19. B. C. Statishkumar, A. Govindaraj, C. N. R. Rao, Chem. Phys. Lett, 1999; 307: 158. 20. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson. Nature, 1996; 381: 678. 21. E. W. Wong, P. E. Sheehan and C. M. Lieber. Science, 1997; 277: 1971. 22. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A. Smith. Applied Physics Letters, 1999; 74(25): 3803. 23. S. ijima, C. Brabec, A. J. Maiti, Bernholc. J. Chem. Phys.1996; 104: 2089. 24. M. Terrones, W. Hsu, K. Kroto, H. W. Kroto, Walton, D. R. M. Topics in Current Chemistry, 1998: 1. 25. J. Hone, M. Whitney, C. Piskoti, Zettl, A. Phys. Rev. B, 1999; 59: 2514. 26. M. A. Osman, D. Srivastava, Nanotechnology. 2001; 12. 27. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 1992; 68: 1579. 28. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Appl. Rev. Lett., 1992; 60: 2204. 29. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 1998; 391: 59. 30. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature, 1996; 382: 54. 31. J. E. Fischer. Acc. Chem. Res., 2002; 35: 1079. 32. R. Dagani, Chemical & Engineering News, 1999; 25: 51. 33. A. Akelah, P. Kelly, S. Qutubuddin, A. Moet, Clay Miner., 1994; 29: 169. 34. D.M. Delozier ; R.A. Orwoll ; J.F. Cahoon, Polymer, 2002; 43: 813. 35. Z. M. Liang ; J. Yin ; H. J. Xu, Polymer, 2003; 44: 1391. 36. J. H. Chang, M. P. Kwang, D. Cho, Polymer Engineering and Science, 2001; 41(9): 1514. 37. J. H. Chang, M. P. Kwang, Polymer Engineering and Science, 2001; 41(12): 2226. 38. S. H. Hsiao ; G. S. Liou ; L. M. Chang, Journal of Applied Polymer Science, 2001; 80: 2067. 39. A. Gu ; S. W. Kuo ; F. C. Chang, Journal of Applied Polymer Science, 2001; 79: 1902. 40. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 1994; 265: 1212. 41. A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai. Composites Science and Technology, 2002; 62: 1993. 42. X. Gong, J. Liu, S. Baskaran, D. V. Roger. J. S. Young, Chem Mater, 2000; 12: 1049. 43. M. S. P. Shaffer, A. H. Windle, Adv. Mater., 1999; 11: 937. 44. P. C. P. Watts, W. K. Hsu, G. Z. C hen, D. J. Fray, H. W. Kroto, D. R. M. Walton, Journal Of Materials Chemistry. 2001; 11: 2482. 45. W. D. Zhang, L. Shen, I. Y. Phang, T. Liu, Macromolecules, 2004; 37: 256. 46. B. P. Grady, F. Pompeo, R. L. Shambaugh, D. E. Resasco. J. Phys. Chem. B, 2002; 106: 5852. 47. H. G. Florian, W. H. G. Malte, F. Bodo and S. Karl. Composites Science and Technology, 2005; 65: 2300. 48. K. T. Lau, M. Lu and K. Liao. Composites: Part A, 2006; 37: 1837. 49. C. F. Schmid and D. J. Klingenberg. Phys Rev Lett, 2000; 84(2): 290. 50. Y. S. Song and J. R. Youn. Carbon, 2005; 43: 1378. 51. K. T. Lau, S. Q. Shi and H. M. Cheng. Composites Science and Technology, 2003; 63: 1161. 52. D. Qian, E. Dickeya, R. Andrews. Appl Phys Lett. 2000; 76: 2868. 53. B. Safadi, R. Andrews, E. Grulke. J Appl Polym Sci. 2002; 84: 2660. 54. K. Putz, R. Krishnamoorti, P. F. Green. Polymer. 2007; 48: 3540. 55. F.M. Blighe, Y. R. Hernandez, W. J. Blau. Adv Mater. 2007; 19: 4443. 56. Y. Yang, C. Gupta. Nano Lett. 2005, 5: 2131. 57. Kongh, C. Gao, D. Yan. Macromolecules. 2004; 37: 4022. 58. 孫國星、陳光明、劉正平。高分子通報,2009年2月,第12頁。 59. Kims, H. Choi, S. Hong. Colloid Polym Sci, 2007; 285: 593. 60. F. Benjamin, M. Karine, G. Alfonso. Chem Phys Lett, 2007; 444: 71. 61. H. Ham, Y. Choi, M. Chee. J Polym Sci: Part A, 2006; 44: 573. 62. J. Harry, Barraza, P. Francisco. Nano Lett, 2002; 8: 797. 63. H. Lu, B. Fei, H. John. Carbon, 2007; 45: 936. 64. Z. Wang, M. Lu, H. L. Li. Mater Chem Phys, 2006; 100: 77. 65. H. Xu, X. Wang, Y. Zhang. Chemmater, 2006; 18: 2929. 66. 王章郁,王琪,陳英紅。高等學校化學學報,2007年,第28期,571頁。 67. D. Hill, Y. Lin, A. Rao. Macromolecules, 2002; 35: 9466. 68. P. Watts, W. Hsu, Z. George. J Mater Chem, 2001; 11: 2482. 69. G. Sun, G. Chen, J. Liu. J Mater Chem, submitted. 70. J. Xie, J. Yang, G. Chen. J Dispers Sci Techn, 2009, 30: 8~131. 71. Z. Tadmor and C. G. Gogos, Principles of polymer Processing, Wiley, 1979. 72. G. Sun, G. Chen, J. Liu. J Mater Chem, submitted. 73. D. F. Bagster, D. Tomi, D.F. Bagster, D. Tomi Chem. Eng. Sci. 1974; 29: 1773. 74. S. W. Horwatt, I. Manas-Zloczower, D. L. Feke. Rubber Chem Technol, 1992; 65(4): 805. 75. J. F. Rabek. Experimental Methods in Polymer Chemistry. NewYork, 1980. 76. A. S. Douglas, J. L. James, Principles of Instrumental Analysis, Fourth Edition. 77. P. R. Couchman and F. E. Karasz, Polymer, 1997; 38: 459. 78. L. A. Utracki, Advanced Polymer Technology, 1985; 33: 5. 79. J. M. Pochan, C. L. Beatty and D. F. Pochan, Polymer, 1979; 20: 879. 80. M. Gordon and J. S. Taylor, Journal of Applied Chemistry, 1952; 2: 493. 81. T. G. Fox, Journal of Applied Bulletin American Physical Society, 1956; 1: 123. 82. 羅聖全。研發奈米科技的基本工具之一電子顯微鏡介紹– TEM。小奈米大世界。 83. 潘志宏。國立臺灣海洋大學光電科學研究所碩士論文,2003年。 84. W.D. Callister Jr, Material Science And Engineering An Introduction. Wiley 3rd edition, 1994.
摘要: 由於聚苯乙烯塑膠具有良好的加工特性且價廉,因此在泛用塑膠中佔有相當大的應用市場,如包裝材料及電子封裝材料等。 目前市面上的複合型導電高分子仍以添加碳黑為主。然而碳黑系的導電高分子主要有顆粒掉出、添加量大以及物性較差等缺點。本研究以多壁奈米碳管做為導電填充物,因碳管具有良好的機械性質與導電性質,故所製得之PS/MWNTs奈米複材與PS/CB比較下PS/MWNTs將擁有低添加量及増加電性質與機械性質之特點。 為了改散多壁奈米碳管添加於基材之準確性與分散性,本研究選擇溶液混合法來將多壁奈米碳管均勻分散於溶劑中,並與高分子/碳管充分的混合,以此先行製作成具有高奈米碳管含量聚苯乙烯母粒。接著再將基材與PS/MWNTs奈米碳管母粒藉由稀釋混煉的方式製備PS/MWNTs奈米複合材料。 實驗結果發現PS/MWNTs複合材料在機械性質方面,如抗拉強度、硬度皆有隨著奈米碳管含量增加而提升,電性質方面,導電性提升非常顯著, 但耐熱性與玻璃轉移溫度並未因添加多壁奈米碳管而提升。
Polystyrene has been widely used in many areas, such as packaging materials, because it is reasonable price and good processing ability. To fabricate polymer material with good conductivity, it is normally added carbon black into polymer matrix. But carbon black base composites have many disadvantages, such as particle falling and poor mechanical properties for polymer/carbon black composites, with high contents of carbon black (CB). In this study, we use multi-walled carbon nanotubes (MWNTs) as electric filler to prepare PS/MWNT nanocomposites. Because MWNTs contain excellent mechanical properties and electrical conductivity, the amount of MWNT can be significantly reduced compared to that of PS/CB composites. The PS/MWNT nanocomposites have been fabricated using PS/MWNT master batch synthesized by mixing PS and MWNT in solution and PS resin through meet compounding. The experimental results show the mechanical and electrical properties of PS/MWNT nanocomposites increase as the contents of MWNT increase. But the thermal stability and glass transition temperature did not enhance as the addition of MWNTs.
URI: http://hdl.handle.net/11455/10521
其他識別: U0005-2208200721015400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200721015400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.