Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10534
標題: 鎳磷薄膜於矽(100)基材矽化反應之研究
Silicidation reaction of Ni-P thin films on Si(100) substrates
作者: 詹巽揚
Chan, Hsun-Yang
關鍵字: Thermal stability
熱穩定性
nickel silicide
Ni-P films
interface
鎳矽化物
鎳磷薄膜
界面
出版社: 材料科學與工程學系所
引用: [1] S.P. Murarka, “Self-aligned silicides or metals for very large scale integrated circuit applications”, J. Vac. Sci. Technol. B, 4 (1986) 1325. [2] C.M. Osburn, Q.F. Wang, M. Kellam, C. Canovai, P.L. Smith, G.E. McGuire, Z.G. Xiao, G.A. Rozgonyi, “Incorporation of metal silicides and refractory metals in VLSI technology”, Appl. Surf. Sci., 53 (1991) 291. [3] K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2”, Mater. Sci. Eng. R, 11 (1993) 53. [4] E.G. Colgan, J.P. Gambino, Q.Z. Hong, “Formation and Stability of silicides on polycrystalline silicon”, Mater. Sci. Eng. R, 16 (1996) 43. [5] U. Falke, F. Fenske, S. Schulze, M. Hietschold, “XTEM studies of nickel silicide growth on Si(100) using a Ni/Ti bilayer system”, Phys. Stat. Sol. (a), 162 (1997) 615. [6] S.W. Lu, C.W. Nieh, L.J. Chen, “Epitaxial growth of NiSi2 on ion-implanted silicon at 250-280℃”, Appl. Phys. Lett., 49 (1986) 1770. [7] K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, Y. Yasuda, “Influence of structural variation of Ni silicide thin films on electrical property for contact materials”, J. Appl. Phys., 43 (2004) 1896. [8] D.M. Brown, W.E. Engeler, M. Garfinkel, P.V. Gray, “Self-registered molybdenum-gate MOSFET”, J. Electro. Soc., 115 (1968) 874. [9] P.L. Shah, “Refractory metal gate process for VLSI applications”, IEEE Trans. Electron Devices, 26 (1979) 631. [10] K.L. Wang, T.C. Holloway, R.F. Pinizzotto, Z.P. Sobczak, W.R. Hunter, A.F. Tasch, “Composite TiSi2/n+ poly-Si low resistivity gate electrode and interconnect for VLSI device technology”, IEEE Trans. Electron Devices, 29 (1982) 547. [11] J.B. Lasky, J.S. Nakos, O.J. Cain, P.J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2”, IEEE Trans. Electron Devices, 38 (1991) 262. [12] Y. Matsubara, T. Horiuchi, K. Okumura, “Activation energy for the C49-to-C54 phase transition of polycrystalline TiSi2 films with arsenic impurities”, Appl. Phys. Lett., 62 (1993) 2634. [13] S. Motakef, J.M.E. Harper, F.M. d'Heurle, T.A. Gallo, N. Herbots, “Stability of C49 and C54 phase of TiSi2 under ion bombardment”, J. Appl. Phys., 70 (1991) 2660. [14] V. Probst, H. Schaber, P. Lippens, L. Van den hove, R. De Keersmaeckeer, “Limitations of TiSi2 as a source for dopant diffusion”, Appl. Phys. Lett., 52 (1988) 1803. [15] K.N. Tu, G. Ottaviani, R.D. Thompson, J.W. Mayer, “Thermal stability and growth kinetics of Co2Si and CoSi in thin-film reaction”, J. Appl. Phys., 53 (1982) 4406. [16] S.S. Lau, J.W. Mayer, K.N. Tu, “Interaction in the Co/Si thin film system. I. kinetics”, J. Appl. Phys., 49 (1978) 4005. [17] G.J. van Gurp, W.F. van der Weg, D. Sigurd, “Interaction in the Co/Si thin film system. Ⅱ. Diffusion-maker experiments”, J. Appl. Phys., 49 (1978) 4011. [18] G.J. van Gurp, C. Langereis, “Cobalt silicide layers on Si. I. Structure and growth”, J. Appl. Phys., 46 (1975) 4301. [19] K. Kobushi, S. Okada, S. Kameyama, K. Tsuji, “A high integrity and low resistance Ti-polycide gate using a nitrogen ion-implanted buffer layer”, Jpn. J. Appl. Phys., 27 (1988) 2158. [20] F. Deng, R.A. Johnson, P.M. Asbeck, S.S. Lau, W.B. Dubbelday, T. Hsiao, J. Woo, “Salicidation process using NiSi and its device application”, J. Appl. Phys., 81 (1997) 8047. [21] H. Iwai, T. Ohguro, S.I. Ohmi, “NiSi salicide technology for scaled CMOS”, Microelectron. Eng., 60 (2002) 157. [22] D. Mangelinck, J.Y. Dai, J.S. Pan, S.K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition”, Appl. Phys. Lett., 75 (1999) 1736. [23] F. Deng, R.A. Johnson, P.M. Asbeck, S.S. Lau, W.B. Dubbelday, T. Hsiao, J. Woo, “Salicidation process using NiSi and its device application”, J. Appl. Phys., 81 (1997) 8047. [24] J.F. Liu, H.B. Chen, J.Y. Feng, J. Zhu, “Improvement of the thermal stability of NiSi films by using a thin Pt interlayer”, Appl. Phys. Lett., 77 (2000) 2177. [25] C. Lavoie, C. Detavernier, C. Cabral Jr., F.M. d'Heurle, A.J. Kellock, J. Jordan-Sweet, J.M.E. Harper, “Effect of additive elements on the phase formation and morphological stability of nickel monosilicide films”, Microelectron. Eng., 83 (2006) 2042. [26] D. Lee, K. Do, D.H. Ko, S. Choi, J.H. Ku, C.W. Yang, “The effect of Ta on the formation of Ni-silicide in Ni0.95xTax0.05/Si systems”, Mater. Sci. Eng. B, 114 (2004) 241. [27] Y. He, X.L. Liu, J.Y. Feng, Q.L. Wu, “Effect of a Ge interlayer on the high-temperature behavior of NiSi films”, J. Appl. Phys., 96 (2004) 6928. [28] C.J. Choi, S.Y. Chang, S.J. Lee, Y.W. Ok, T.Y. Seong, “Thickness effect of a Ge interlayer on the formation of nickel silicides”, J. Elec. Soc., 154 (2007) 759. [29] S.L. Chiu, Y.C. Chu, C.J. Tsai, H.Y. Lee, “Effects of Ti interlayer on Ni/Si reaction systems”, J. Elec. Soc., 151 (2004) 452. [30] C.J. Choi, Y.W. Ok, T.Y. Seong, H.D. Lee, “Effects of a SiO2 capping layer on the electrical properties and morphology of nickel silicides”, Jpn. Appl. Phys., 41 (2002) 1969. [31] C.C. Wu, W.F. Wu, P.Y. Su, L.J. Chen, F.H. Ko, “Effects of capping layers on the electrical characteristics of nickel silicided junctions”, Microelectron. Eng., 84 (2007) 1801. [32] L.W. Cheng, H.M. Lo, S.L. Cheng, L.J. Chen, C.J. Tsai, “Effects of stress on the formation and growth of nickel silicides in Ni thin films on (0 0 1)Si”, Mater. Sci. Eng. A, 409 (2005) 217. [33] P.S. Lee, D. Mangelinck, K.L. Pey, J. Ding, D.Z. Chi, J.Y. Dai, A. See, “Nickel silicide formation on Si(100) and poly-Si with a presilicide N2+ implantation”, J. Electron. Mater., 30 (2001) 1554. [34] H.F. Hsu, C.L. Tsai, H.Y. Chan, T.H. Chen, “Effect of P addition on the thermal stability and electrical characteristics of NiSi films”, Thin Solid Films, 518 (2009) 1538. [35] R.T.P. Lee, D.Z. Chi, M.Y. Lai, N.L. Yakovlev, S.J. Chua, “Effects of Ti incorporation in Ni on silicidation reaction and structural/electrical properties of NiSi”, J. Elec. Soc., 151 (2004) G645. [36] Y.W. Ok, C.J. Choi, T.Y. Seong, “Effect of a Mo interlayer on the electrical and structural properties of nickel silicides”, J. Electrochem. Soc., 150 (2003) G385. [37] D. Deduytsche, C. Detavernier, R.L. Van Meirhaeghe, C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation”, J. Appl. Phys., 98 (2005) 033526. [38] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Jpn. J. Appl. Phys., 44 (2005) 2945. [39] L.J. Chen, Silicide technology for integrated circuits, The Institution of Electrical Engineers, Lodon, United Kingdom, (2004) 102.
摘要: 在元件尺寸微小化的發展下,鎳矽化物在金氧半電晶體元件上為極具發展潛力的材料,其具有低電阻率、沒有窄線寬效應、沒有橋接短路效應和矽化反應時較少的矽消耗等特性。 為了提升鎳矽化物之熱穩定性及增加與矽基材界面的平整度,許多學者利用添加元素、成長中間層及成長覆蓋層進行研究。本研究利用濺鍍的方式成長鎳磷薄膜,進行固相反應生成鎳矽化物薄膜,並利用不同厚度之磷薄膜成長鎳矽化物,對其反應、薄膜結構及電性進行探討。 結果顯示:以8-nm Ni-P/Si (100)固態反應生成鎳矽化物薄膜,由於反應過程中形成Ni-P-Si-O之覆蓋層,以及在低溫(400 ℃)即形成穩定的NiSi2相,因此將薄膜發生團聚的溫度由500 ℃提升至750 ℃。 在700 ℃退火生成連續且具有低晶界密度及原子級界面平整度之NiSi2層,可減少電子傳輸時之晶界及界面(表面)散射,表現出低於一般NiSi2薄膜之電阻率。 以20-nm Ni-P/Si (100)固態反應生成鎳矽化物薄膜,由於NiSi相的製程窗口延後100 ℃,使其形成低電阻值之範圍往高溫移動100 ℃。 以40-nm Ni-P/Si (100) 固態反應生成鎳矽化物薄膜,其熱穩定性與純鎳薄膜無明顯的差異,但由於磷存在於NiSi2結構中,使晶格常數減少,而增加與矽基材晶格常數之差異,導致形成多晶NiSi2薄膜。
With the increasing miniaturization of the dimensions of integrated devices, Ni-silicide is a promising material for complementary metal-oxide-semiconductor (CMOS) devices because NiSi has a low resistivity, line-width-independent sheet resistance and low silicon consumption. Many researchers have reported that a high thermal stability or a uniform Ni-silicide layer was formed by the addition of impurity, interlayer and capping layer. In this study, Ni-P films were deposited on Si (100) substrates by sputtering. Then Ni-silicide layers were formed by solid-phase reaction in Ni-P/Si (100) systems. Ni-silicide layers were prepared with various thicknesses to study the interface reactions, structures and electronic properties. The results show as follows. For the 8-nm Ni-P/Si (100) system, a stable films were formed at the annealing temperature of as low as 400℃. Thus, the temperature of silicide films agglomerated increased from 500℃ to 750℃. At 700℃ annealing, a continuous NiSi2 layer with atomic flat interface and low grain boundary density was formed. The sheet resistance was decreased due to the reduction of the grain boundary and interface scattering for the conduction electrons. For the 20-nm Ni-P/Si (100) system, the low-resistivity window shifted towards the high temperature about 100℃. For 40-nm Ni-P/Si (100) system, the thermal stability of Ni-silicide films was similar to the 20-nm Ni-P/Si (100) system. However, because of the addition of P atoms the lattice constant of NiSi2 reduced, which causes the increasing of the lattice mismatch of NiSi2 and Si. The phenomenon leaded to the formation of a polycrystalline NiSi2 films.
URI: http://hdl.handle.net/11455/10534
其他識別: U0005-2408200713312500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200713312500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.