Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10549
標題: 藉以熱化學氣相沉積法於固定乙炔/氬氣比例下製備碳密封鍍層光纖:不同沉積溫度的影響
Effect of different deposition temperatures on the hermetically carbon-coated optical fiber prepared by thermal chemical vapor deposition method at afixed acetylene/argon ratio
作者: 王孟坤
Wang, Meng-Kun
關鍵字: TCVD
熱化學氣相沉積法
acetylene
argon
fiber
乙炔
氬氣
光纖
出版社: 材料科學與工程學系所
引用: [1] 李銘淵, “光纖通信概論”, 全華科技圖書公司 (2005). [2] K.C. Kao and G.A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies”, IEE Proceedings, 133 (1966) 1151. [3] W.A. Gambling, “The Rise and Rise of Optical Fibers”, IEEE Journal on Selected Topics in Quantum Electronics, 6 (2000) 1084. [4] C.R. Kurkjian, J.T. Krause, and M.J. Matthewson, “Strength and fatigue of silica optical fibers”, Journal of Lightwave Technology, 7 (1989) 1360. [5] G. Keiser, “Optical Fiber Communication”, Second Edition, McGraw-Hill, New York (1991). [6] K.C. Kao, “Optical Fiber System:Technology, Design, and Applications”, McGraw-Hill, New York (1982). [7] B. Chomycz, “Fiber optic installer’s field manual”, McGraw-Hill, New York (2000). [8] D.K. Mynbaev, L.L. Scheiner, “Fiber-optic communications technology”, Prentice Hall, New Jersey (2001). [9] 吳曜東, “光纖原理與應用”, 全華科技圖書公司 (1997). [10] A.H. Cherin, “An Introduction to Optical Fibers”, McGraw-Hill, NewYork (1983). [11] 藤井 陽一 , 李憲中 編譯, “光纖利用技術”, 文笙書局 (1993). [12] 龔祖德, “光纖通訊技術”, 全華科技圖書公司 (1997). [13] P.C.P. Bouten and G. deWith, “Crack Nucleation at The Surface of Stressed Fibers”, Journal of Applied Physics, 64 (1988) 3900. [14] A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of Hydrogen-induced Losses in Silica-based Optical Fibers”, Journal of Lightwave Technology, 8 (1990) 1675. [15] J.L. (Armstrong) Mrotek, M.J. Matthewson, and C.R. Kurkjian, “Diffusion of Moisture through Optical Fiber Coatings”, Journal of Lightwave Technology, 19 (2001) 988. [16] M.M. Bubnov, E.M. Dianov, and S.L. Semjonov, “Maximum Value of Fatigue Parameter n for Hermetically Coated Silica Glass Fibers”, Technology Digest Optical Fiber Communication Conference, ThF2 (1992) 216. [17] C.A. Taylor, W.K.S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings”, Surface and Coatings Technology, 168 (2003) 1. [18] K.E. Lu, G.S. Glaesemann, R.V. Vandewoestine, and G. Kar, “Recent Development in Hermetically Coated Optical Fiber”, Journal of Lightwave Technology, 6 (1988) 240. [19] S. Aisenberg, “Properties and Application of Diamond-like Carbon Films”, Journal of Vacuum Science and Technology, 2 (1984) 369. [20] J.P. Powers, “An Introduction to Fiber Optic Systems”, Aksen Associates, Boston (1993). [21] D.R. Biswas, “Optical Fiber Coatings for Biomedical Applications”, Optical Engineering, 31 (1992) 1400. [22] S.M. Chen, “Electroplated Hermetic Fiber”, Electronic Components and Technology Conference, 48th (1998) 418. [23] H.S. Seo, U.C. Paek, K. Oh, and C.R. Kurkjian, “Melt Coating of Tin on Silica Optical Fiber”, Journal of Lightwave Technology, 16 (1998) 2355. [24] Y. Katsuyama, N. Yoshizawa, and T. Yashiro, “Field Evaluation Resulton on Hermetically Coated Optical Fiber Cables for Practical Application”, Journal of Lightwave Technology, 9 (1991) 1041. [25] C.A. Taylor, W.K.S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings”, Surface and Coating Technology, 168 (2003) 1. [26] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, “Effects of deposition temperature on the properties of hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition”, Surface and Coating Technology, 202 (2007) 798. [27] D.P. Dowling, K. Donnelly, T.P. O''Brien, A. O''Leary, T.C. Kelly, and W. Neuberger, “Application of Diamond-like Carbon Films as Hermetic Coatings on Optical Fibers”, Diamond and Related Materials, 5 (1996) 492. [28] M. Ohring, “Materials science of thin films”, Second Edition, Academic Press, San Diego (2002) 277. [29] 林宏謙, “以電漿輔助化學氣相沉積法製備碳密封鍍層光纖:不同氫氣/甲烷比例對碳薄膜光學性質之影響”, 逢甲大學材料系碩士論文 (2004). [30] 李正中, “薄膜光學與鍍膜技術, 第六版”, 藝軒圖書出版社 (2009) 285. [31] K. Teii, “Structure changes in a-CH films in inductive CH4/Ar plasma deposition”, Thin Solid Films, 333 (1998) 103. [32] T.Y. Lin, R.H. Lee, and S.T. Shiue, “Hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition : effects of different acetylene / argon ratios”, The 2009 Annual Conference of The Chinese Society for Materials Science, Hualien, Taiwan (2009). [33] F. Tuinstra, and J.L. Koenig, “Raman Spectrum of Graphite”, Journal of Chemical Physics, 53 (1970) 1126. [34] P.C. Eklund, J.M. Holden, and R.A. Jishi, “Vibrational Modes of Carbon Nanotubes ; Spectroscopy and Theory”, Carbon, 33 (1995) 959. [35] W.C. Oliver and G.M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, Journal of Materials Research, 7 (1992) 1564. [36] A. Becker and K.J. Hüttinger, “Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon: II. Pyrocarbon Deposition from Ethylene, Acetylene and 1, 3-Butadiene in the Low Temperature Regime”, Carbon, 36 (1998) 177. [37] K.J. Hüttinger, “CVD in Hot Wall Reactors - The Interaction Between Homogeneous Gas-Phase and Heterogeneous Surface Reactions”, Chemical Vapor Deposition, 4 (1998) 151. [38] 林訓瑜, “以熱化學氣相沉積法裂解乙炔製備碳密封鍍層光纖性質之研究”, 中興大學材料系碩士論文 (2008). [39] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, S.L. Suib, “Characteristics of graphite anode modified by CVD carbon coating”, Surface and Coatings Technology, 200 (2006) 3041. [40] B.D. Cullity, S.R. Stock, “Elements of X-ray Diffraction”, Third ed., Prentice Hall, New Jersey (2001). [41] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Applied Physics Letters, 88 (2006) 163106. [42] A.C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, 61 (2000) 14095. [43] 陳柏羽, “氮氣/甲烷比及基材尺寸對以熱化學氣相沉積法製備碳密封鍍層光纖性質之影響”, 中興大學材料系碩士論文 (2008). [44] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao, “Optically transparent superhydrophobic silica-based films”, Thin Solid Films, 472 (2005) 37. [45] S. Adachi, T. Arai, and K. Kobayashi, “Chemical treatment effect of Si(111) surfaces in F-based aqueous solutions”, Journal of Applied Physics, 80 (1996) 5422. [46] T.H. Fang, W.J. Chang, “Effect of freon flow rate on tin oxide thin films deposited by chemical vapor deposition”, Applied Surface Science, 220 (2003) 175. [47] J.H. Son, M.Y. Park, S.W. Rhee, “Growth rate and microstructure of copper thin films deposited with metal-organic chemical vapor deposition from hexafluoroacetylacetonate copper(I) allyltrimethylsilane”, Thin Solid Films, 335 (1998) 229. [48] 吳玉華, “以熱化學氣相沉積法製備碳密封鍍層光纖:不同沉積溫度裂解甲烷對碳膜之影響”, 中興大學材料系碩士論文 (2006). [49] S.T. Shiue, P.T. Lien, and J.-L. He, “Effect of coating thickness on thermal stresses in tungsten-coated optical fibers”, Journal of Applied Physics, 87 (2000) 3759. [50] 李任弘, “以熱化學氣相沉積法製備碳密封鍍層光纖:不同乙炔/氮氣比例、溫度、壓力及流量對碳鍍層性質之影響”, 中興大學材料系碩士論文 (2009).
摘要: This study investigates the effect of different deposition temperatures on the hermetically carbon-coated optical fiber prepared by thermal chemical vapor deposition method at a fixed acetylene/argon ratio. The surface morphology, microstructure, coating thickness, surface property, and electrical property of carbon coatings were investigated by optical microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, field emission scanning electron microscopy, atomic force microscopy, contact angle meter, four point probe method, and nanoindenter. The results indicate that the deposition rate, surface roughness, and electrical resistivity of the carbon coatings increase as the deposition temperature increases, while the degree of ordering, the in-plane crystallite size (La), mean crystallite size (Lc), water-repellency and mechanical properties of the carbon coating decrease. Additionally, based on the low-temperature surface morphology of the carbon coatings, it is found that the carbon film deposited at temperatures below 750℃ with the thickness exceeding 68nm can be used as the hermetic optical fiber coating.
本論文是以熱化學氣相沉積法製備碳密封鍍層光纖,探討在固定乙炔/氬氣混合氣體比例下,不同沉積溫度,對於碳鍍層光纖性質的影響。分別利用場發式掃描電子顯微鏡、X光繞射儀、拉曼光譜儀、原子力顯微鏡、接觸角儀器、四點探針、奈米壓痕儀與光學顯微鏡,量測並觀察碳密封鍍層的表面形貌、微觀結構、表面特性、機械性質與電學性質。結果顯示,隨著沉積溫度上升,碳鍍層的沉積速率、表面粗糙度及電阻率上升,而碳鍍層結構有序程度、平均微晶大小(La及Lc)、抗水性和機械性質則呈下降的趨勢。綜合實驗結果發現,沉積溫度低於750℃以下且碳鍍層厚度不小於68nm之碳鍍層光纖可通過溫變試驗,適合做為光纖的密封鍍層。
URI: http://hdl.handle.net/11455/10549
其他識別: U0005-2707200702090200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200702090200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.