Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10572
標題: 電化學製備MgO和Sn/Li2O薄膜及其應用
Electrochemical Method for Preparing MgO and Sn/Li2O Thin Film and Their Applications
作者: 李青霏
Li, Ching-Fei
關鍵字: 電化學合成
Electrochemical synthesis, cathodic polarization curves, deposition mechanism, Mg(OH)2, MgO, corrosion resistance, lithium ion-batteries, Sn/Li2O
陰極極化曲線
沉積機構
Mg(OH)2
MgO
抗蝕性
鋰離子電池
Sn/Li2O
出版社: 材料科學與工程學系所
引用: Reference [1] Emission Control, Automotive World 4 (2000) p. 10. [2] T. Gill, “Automobiles drive growth in secondary magnesium”, Metal Bulletin Monthly 314 (1997) p. 63. [3] J. Davis, SAE Technical Paper 910551, Detroit, MI, 1991. [4] C. Akey, J Davis, In: Magnesium: The Performance Material, Internattion Magnesium Association, Dearborn, MI, (1989) p. 1. [5] S. Schumann, F. Friedrich, in: B. Mordike, K. Kainer (Eds.), Material Alloys and their Application, Werkstoff-Informationsgesellschaft mbH, Wolfsburg, Germany, (1998) p. 3. [6] G. Cole, in: Magnesium into the Next Millenium, International Magnesium Association, Rome, Italy, (1999) p. 21. [7] Y. Kojima, Mater. Sci. Forum 350-351 (2000) p. 3. [8] D.V. Hai, S. Itoh, S. Kamado and Y. Kojima, Adv. Mater. Res. 11-12 (2006) p. 413. [9] S. Schumanm and H. Friendich, Mater. Sci. Forum 419-422 (2003) p. 51 [10] L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals-Structure and Properties (Taylor & Francis Pub., Moscow, (2003) p. 83. [11] B.L. Mordike and T. Ebert, Mater. Sci. Eng. A302 (2001) p. 37. [12] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys — ASM Speciality Handbook, ASM International, Ohio, (1999) p. 1-71. [13] D.A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, (1996) p. 40 [14] G. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Advanced Engineering Materials 1 (1999) p. 11. [15] G.L. Makar, J. Kruger, Corrosion of magnesium, International Materials Reviews, 38 (1993) p. 138. [16] O. Lunder, T.K.R. Aune, K. Nisancioglu, Effect of Mn additions on the corrosion behaviour of mould-cast magnesium ASTM AZ91, Corrosion 43 (1987) p. 291. [17] O. Lunder, J.E. Lein, T.K.R. Aune, K. Nisancioglu, The role of the Mg17Al12 phase in the corrosion of Mg alloy AZ91, Corrosion 45 (1989) p. 741. [18] J. D. Hanawalt, C. E. Nelson, and J. A. Peloubet, Corrosion studies of Magnesium and Its Alloys, Trans. AIME, 147 (1942) p. 273. [19] G. Song, A. L. Bowles, D. H. StJohn, Materials Science and Engineering A366 (2004) p. 74. [20] N.N. AUNG, W. ZHOU, Journal of Applied Electrochemistry, 32 (2002) p. 1397. [21] Y. Li , T. Zhang, F. Wang, Electrochimica Acta 51 (2006) p. 2845. [22] M. Dabala, K. Bruneli, E. Napolitani, M. Magrini, Surf. Coat. Tech., 172 (2003) p. 227. [23] C. S. Lin, H. C. Lin, K. M. Lin, W. C. Lai, Corr. Sci., 48 (2006) p. 93 [24] M. Zhao, S. Wu, P. An, J. Luo, Y. Fukuda, H. Nakae, Mater. Chem. Phy., 99 (2000) p. 54. [25] Y. Ma, X. Nie, D. O. Northwood, H. Hu, Thin Solid Films, 469-470, (2004) p. 472. [26] F. Stippich, E. Vera, G. K. Wolf, G. Berg, C. Friedrich, Surf. Coat. Tech., 103-104 (1998) p. 29. [27] A. I. Ektessabi, H. Nomura, N. Yasui, Y. TsuKuda, Surf. Coat. Tech., 163-164 (2003) p. 728. [28] F. Hollstein, R. Wiedemann, J. Scholz, Surf. Coat. Tech., 162 (2003) p. 261. [29] H. Hoche, C. Rosenkranz, A. Delp, M. M. Lohrengel, E. Broszeit, C. Berger, Surf. Coat. Tech., 193 (2005) p. 178. [30] H. Altun, S. Sen, Surf. Coat. Tech., 197 (2005) p. 193. [31] G. Abbas, Z. Liu, P. Skeldon, Appl. Surf. Sci., 247 (2005) p. 347. [32] Z. Shi, G. Song, A. Atrens, Surf. Coat. Tech., 201 (2006) p. 492. [33] Z. Shi, G. Song, A. Atrens, Corr. Sci., 48, (2006) p. 1939. [34] A. N. Khramov, V. N. Balyshev, L. S. Kasten, R. A. Mantz, Thin Solid Films, 514 (2006) p. 174. [35] H. Hoche, H. Scheerer, D. Probst, E. Broszeit, C. Berger, Surf. Coat. Tech., 174-175 (2003) p. 1002. [36] Y. Ma, X. Nie, D. O. Northwood, H. Hu, Thin Solid Films, 494 (2006) p. 296. [37] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, W. Liu, T. Xu, Surf. Coat. Tech., 199 (2005) p. 121. [38] H. Duan, K. Du, C. Yan, F. Wang, Electrochem. Acta, 51 (2006) p. 2898. [39] H. Guo, M. An, S. Xu, H. Huo, Mater. Lett., 60 (2006) p. 1538. [40] Y. Q. Wang, K. Wu, M. Y. Zheng, Surf. Coat. Tech., 201 (2006) p. 353. [41] Q. Cai, L. Wang, B. Wei, Q. Liu, Surf. Coat. Tech., 200 (2006) p. 3727 [42] J. Li, Y. Tian, Z. Huang, X. Zhang, Appl. Surf. Sci., 252 (2006) p. 2839. [43] C. Gu, J. Lian, J. He, Z. Jiang, Q. Jiang, Surf. Coat. Tech., 200 (2006) p. 5413. [44] M. Medraj, A. Parvez, Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles. Automotive, (2007) p. 45. [45] S. Das, JOM J Miner Metals Mater Society, 55 (2003) p. 22. [46] Robots 4 welding (2007) Welding magnesium. http://www.robots4welding.com/magnesium-welding-automation.htm [47] Bavarian Motor Works (2007) Magnesium fosters rebirth of an automotive engine. International magnesium association: The global voice for magnesium (May):1-3. [48] Water, electrolyte mineral and acid/base metabolism. Section 2. Endocrine & Metabolic Disorders. Merk Manual of Diagnosis and Therapy Chapter 12 [49] N.E.L. Saris, Magnesium: an update on physiological, clinical and analytical aspects, Clin Chim Acta 294 (2000), pp. 1 [50] T. Okuma, Magnesium and bone strength, Nutrition 17 (2001) p. 679. [51] J. Vormann, Magnesium: nutrition and metabolism, Mol Aspects Med 24 (2003) p. 27. [52] F.I. Wolf and A. Cittadini, Chemistry and biochemistry of magnesium, Mol Aspects Med 24 (2003) p. 3. [53] A. Hartwig, Role of magnesium in genomic stability, Mutat Res/Fund Mol Mech Mutagen 475 (2001) p. 113. [54] M. Staiger, A. Pietak, J. Huadmai, G. Dias, Biomater. 27 (2006) p. 1728. [55] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer,W. Hartung,W. Haverich, Heart 89 (2003) 651. [56] Masataka Wakihara, Material Science and Engineering, R33 (2001) 109-134 [57] Walter A. van Schalkwijk and Bruno Scrosati, “Advances in Lithium-Ion Batteries”, 2002 Kluwer Academic Publishers, New York, Boston, p. 1 [58] Gold Peak Industries Ltd., Lithium Ion technical handbook. [59] Murphy, D. W., DiSalvo, F. J., Carides, J. N. & Waszczak, J. V. Topochemical reactions of rutile related structures with lithium. Mat. Res. Bull. 13 (1978) p. 1395. [60] Lazzari, M. & Scrosati, B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127 (1980) p. 773. [61] Will, F. G. Hermetically sealed secondary battery with lanthanum nickel anode. US patent 3874958 (1975). [62] Percheron-Guegan, A., Achard, J. C., Sarradin, J. & Bronoël, G. Alliages à base de Lanthane et de Nickel et leurs applications électrochimiques. French patent 7516160 (1975). [63] F.R. Kalhammer, A. Kozawa, C.B. Moyer, B.B. Owens, Interface 1 (1996) p. 33 [64] Y. Nishi, K. Katayama, Extended Abstracts of the 8th Int. Mtg. on Lithium batteries, Nagoya, Japan, (1996), p. 13 [65] K. Brandt, Extended Abstracts of the 8th Int. Mtg. on Lithium Batteries, Nagoya, Japan, (1996), p. 9 [66] B. Scrosati, Nature 373 (1995) p. 557. [67] http://www.solicore.com/applications.asp [68] T. Handa, S. Shoji, S. Ike, S. Takeda, and T. Sekiguchi, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, paper 1003-1006. [69] C.L. Schmidt, and P.M. Skarstad, Journal of Power Sources, 97-98 (2001) p. 742. [70] J.B. Bates, G.R. Gruzalski, N.J. Dudney, C.F. Luck, and X.H. Yu, Solid State Technology, 38 (1993) p. 59 [71] N.J. Dudney, B.J. Neudecker, Current Opinion in Solid State and Materials Science 4 (1999) p. 479 [72] B. B. Owens, S. T. Passerini, and W. H. Smyrl, Electrochimica Acta, 45 (1999) p. 215. [73] Y. J. Park, J. G. Kim, M. K. Kim, H. T. Chung, W. S. Um, M. H. Kim, and H. G. Kim, Journal of Power Sources, 76 (1998) p. 41. [74] Y. J. Park, J. G. Kim, M. K. Kim, H. T. Chung, and H. G. Kim, Solid State Ionics, 130 (2000) p. 203. [75] A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, and W. Gopel, Thin Solid Films, 307 (1997) p. 288. [76] W.Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D.D. Lee, and N. Yamazoe, Sensors and Actuators B, 46 (1998) p. 139. [77] A. Dieguez, A.R. Rodriguez, J.R. Morante, J. Kappler, N. Barsan, and W. Gopel, Sensors and Actuators B, 60 (1999) p. 125. [78] T.D. Senguttuvan, and L.K. Malhotra, J. Phys. Chem. Solids, 58 (1997) p. 19. [79] B. Orel, and U.L. Stangar, J. Electrochem. Soc., 141 (1994) p. L127. [80] Mg application in automotive industry (2007) http://www.avisma.ru/mg/eng/03-2.htm [81] P.E. DeGarmo, Materials and processes in manufacturing (5th ed), Collin Macmillan, New York (1979). [82] L. Gibson and M. Ashby, Cellular solids. Structure and properties, Pergamon Press, Sydney (1988) p. 1. [83] L. Gibson and M. Ashby, Cellular solids. Structure and properties, Pergamon Press, Sydney (1988) p. 316. [84] J.W. Choi, Y.M. Kong, H.E. Kim and I.S. Lee, Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3, J Am Ceram Soc 81 (1998) p. 1743. [85] T.V. Thamaraiselvi and S. Rajeswari, Biological evaluation of bioceramic materials—a review, Trends Biomater Artif Organs 19 (2004) p. 9. [86] K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo, Solid State Ionics 9-10 (1983) p. 1445. [87] K. Kanehori, Y. Ito, F. Kirino, K. Miyauchi, T. Kudo, Solid State Ionics 18-19 (1986) p. 818. [88] F. Kirino, Y. Ito, K. Miyauchi, T. Kudo, Nippon Kagakukaishi (1986) p. 445. [89] G. Meunier, R. Dormoy, A. Levasseur, Mater. Sci. Eng. B3 (1989) p. 19. [90] R. Creus, J. Sarradin, R. Astier, A. Pradel, A.M. Ribes, Mater. Sci. Eng. B3 (1989) p. 109. [91] M. Baba, N. Kumagai, H. Kobayashi, O. Nakano, K. Nishidate, Electrochem. Solid State Lett. 2 (1999) p. 320. [92] M. Baba, N. Kumagai, N. Fujita, K. Ohta, K. Nishidate, S. Komaba, H. Groult, D. Devilliers, B. Kaplan, J. Power Sources 97-98 (2001) p. 798 [93] S.D. Jones, J.R. Akridge, Solid State Ionics 53-6 (1992) p. 628. [94] S.S. Zhang, J. Power Sources 161 (2006) p. 1385 [95] H. Ohtsuka, J. Yamaki, Jpn. J. Appl. Phys. 28 (1989) p. 2264. [96] H. Ohtsuka, S. Okada, J. Yamaki, Solid State Ionics 40 (1990) p. 964 [97] N.J. Dudney, J.B. Bates, R.A. Zuhr, S. Young, J.D. Robertson, H.P. Jun, S.A. Hackney, J. Electrochem. Soc. 146 (1999) p. 2455. [98] B.J. Neudecker, N.J. Dudney, J.B. Bates, J. Electrochem. Soc. 147 (2000) p. 517. [99] B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson, J. Electrochem. Soc. 143 (1996) p. 3203. [100] B.J. Neudecker, R.A. Zuhr, J.D. Robertson, J.B. Bates, J. Electrochem. Soc. 145 (1998) p. 4148. [101] B.J. Neudecker, R.A. Zuhr, J.D. Robertson, J.B. Bates, J. Electrochem. Soc. 145 (1998) p. 4160. [102] J.B. Bates, D. Lubben, N.J. Dudney, F.X. Hart, J. Electrochem. Soc. 142 (1995) p. L149. [103] J.B. Bates, N.J. Dudney, D.C. Lubben, G.R. Gruzalski, B.S. Kwak, X. Yu, R.A. Zuhr, J. Power Sources 54 (1995) p. 58. [104] B.J. Neudecker, R.A. Zuhr, J.B. Bates, J. Power Sources 81-82 (1999) p. 27. [105] Y.S. Park, S.H. Lee, B.I. Lee, S.K. Joo, Electrochem. Solid State Lett. 2 (1999) p. 58. [106] M. K. Kulekci, Int J Adv Manuf Technol 39 (2008) p. 851. [107] J.-M. Tarascon, and M. Armand, NATURE, Vol. 414 (2001) p. 359. [108] F. Orsini, A. du Pasquier, B. Beaudouin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. de Beer, P. Notten, J. Power Sources 81-82, (1999) p. 918. [109] Ph. Baranek, A. Lichanot, R. Orlando, R. Dovesi, Chemical Physics Letters 340 (2001) p. 362 [110] WebElements. "Chemistry : Periodic Table : compound data [magnesium (II) oxide". Retrieved on 2008-12-06. [111] S. H. C. Liang and I. D. Gay, J. Catal. 101(1986) p. 293 [112] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater. 13 (2001) p. 435 [113] S. J. Rho, S. M. Jeong thin, H. K. Baik, K. M. Song, Thin Solid Films 355-356 (1999) p. 55. [114] C. H. Park, W. G. Lee, D. H. Kim, H. J. Ha, J. Y. Ryu, Surface and Coatings Technology 110 (1998) p. 128 [115] M. M. Sung, C. Kim, J. Crystal growth 210 (2000) p. 651 [116] K. H. Nam, J.G. Han, Surf. Coat. Tech., 171, (2003) p. 51. [117] J. H. Lee, J. H. Eun, S. Y. Park, S. G. Kim, H. J. Kim, Thin Solid Films, 435, (2005) p. 95 [118] S. G. Kim, K. H. Choi, J. Hwan, H. J. Kim, C. S. Hwang, Thin Solid Films, 377-378 (2000) p. 694. [119] A. I. Ektessabi, H. Nomura, N. Yasui, Y. TsuKuda, Surf. Coat. Tech., 163-164 (2003) p. 728. [120] K. Oumi, H. Matsumoto, K. Kashiwagi, Y. Murayama, Surf. Coat. Tech., 169-170, (2003) p. 562. [121] J. Y. Kim, H. S. Jung, K. S. Hong, J. Am. Ceram. Soc., 88, (2005) p. 784. [122] C. Bondoux, P. Prence, P. Belleville, F. Guillet, S. Lanmbert, B. Miont, R. Jerisian, J. Eur. Ceram. Soc., 25 (2005) p. 2795 [123] P. G. Balakrishnan, R. Ramesh, T. P. Kumar, Journal of Power Sources 155 (2006) p. 401. [124] R. Selim, and P. Bro, J. Electrochem. Soc., 121 (1974) p. 1467 [125] F.W. Dampier, and S.B. Brummer, Electrochim. Acta, 22 (1977) p. 75 [126] M. Nishijima, T. Kagohashi, M. Imanishi, Y. Takeda, O. Yamamoto, S. Kondo, Solid State Ionics, 83 (1996) p. 107. [127] T. Shodai, S. Okada, S. Tobishima, J. Yamaki, Solid State Ionics, 86-87 (1996) p. 785. [128] T. Shodai, Y. Sakurai, T. Suzuki, Solid State Ionics, 122 (1999) p. 85. [129] C.J. Wen, and R.A. Huggins, J. Electrochem. Soc., 128 (1981) p. 1181. [130] C.J. Wen, and R.A. Huggins, Mat. Res. Bull., 15 (1980) p. 1225 [131] W. Weppner, R.A. Huggins, J. Electrochem. Soc., 124 (1977) p. 1569. [132] W. Weppner, R.A. Huggins, J. Solid State Chem., 22 (1977) p. 297. [133] M.L. Saboungi, J. Electrochem. Soc., 126 (1979) p. C322. [134] R. Nesper, Prog. Solid State Chem., 20 (1990) p. 1. [135] A.H. Whitehead, J.M. Elliott, J.R. Owen, Journal of Power Sources, 81-82 (1999) p. 33. [136] J. O. Besenhard, J. Yang, M. Winter, J. Power Sources 68 (1997) p. 87. [137] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) p. 1395. [138] W. H. Ho, H. C. Liu, H. C. Chen, S. K. Yen, Surface and Coatings Technology 201 (2007) p.7100. [139] W. H. Ho, C. F. Li, H. C. Liu, S. K. Yen, Journal of power sources, 175 (2008) p. 897. [140] H. C. Liu and S. K. Yen, J. Power Sources, 166 (2007) p. 478. [141] Y. N. Nuli, S. L. Zhao, Q. Z. Qin, Journal of Power Sources, 114 (2003) p. 113. [142] Masataka Wakihara, Material Science and Engineering, R33 (2001) p. 109. [143] K. Mizushima, P.C. Jones, P.C. Wiseman, and J.B. Goodenough, Mater. Res. Bull., 15 (1980) p. 783. [144] T. Nagaura, and K. Tazawa, Prog. Batt. Sol. Cells, 9 (1990) p. 20. [145] W. Ebner, D. Fouchard, and L. Xie, Solid State Ionics, 69 (1994) p. 238. [146] J.R. Dahn, U.V. Sacken, M.R. Jukow, and H.A. Janaby, Journal of The Electrochemical Society, 138 (1991) p. 2207. [147] T. Ohzuku, A. Ueda, and M. Nagayama, Journal of The Electrochemical Society, 140 (1993) p. 1862. [148] M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J.P. Peres, 54 (1995) p. 109. [149] A. Robert Armstrong, Peter G. Bruce Nature 381, (1996) p. 499. [150] D. Ahn, and M. Song, Journal of The Electrochemical Society, 147 (2000) p. 874. [151] A. Rougier, P. Gravereau, and C. Delmas, Journal of The Electrochemical Society, 143 (1996) p. 1168. [152] G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Journal of The Electrochemical Society, 143 (1996) p. 1114. [153] H. Huang, and P.G. Bruce, Journal of The Electrochemical Society, 141 (1994) p. L76. [154] H. Huang, and P.G. Bruce, Journal of Power Sources, 54 (1995) p. 52. [155] A. Yamada, J. Solid State Chem. 122 (1995) p. 160. [156] M. Morita, M. Ishikawa, Y. Matsuda, Organic electrolytes for rechargeable lithium ion batteries, in: M. Wakihara, O. Yamamoto (Eds.), Lithium Ion Batteries, Kodansha, Tokyo; Whiley/VCH, Weinheim, (1998) p. 156 [157] A.N. Dey, Electrochimica. Acta, 21 (1976) p. 377. [158] A.N. Dey, Thin Solid Films, 43 (1977) p. 131. [159] P.V. Wright, Br. Polym. J., 7 (1975) p. 319. [160] M.B. Armand, J.M. Chabagno, M. Duclot, Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, September 20-22, (1978), Extended Abstracts [161] K. Murata, S. Izuchi, Y. Yoshihisa, Electrochimica Acta, 45 (2000) p. 1501 [162] J.Y. Sanchez, F.Alloin, N. Chaix, J. Saunier, B.V.R. Chowdari ed., Solid State Ionics: Science and Technology, World Scientific, Singapore, (1998) p.173 [163] M. Armand, J.Y. Sanchez, M. Gauthier, Y. Choquette, J. Lipkowski, P.N. Ross ed., The Electrochemistry of Novel Material, VCH Publisher 3 (1993) p.65. [164] G.. Feuillade, Ph. Perche, J. Appl. Electrochem., 5 (1975) p. 63 [165] J.M. Tarascon, A.S. Gozdz, C. Schmutz, F. Shokooki, P.C. Warren, Solid State Ionics, 89-88 (1996) p. 49. [166] T. Michot, A. Nishimoto, M. Watanabe, Electrochimica. Acta, 45 (2000) p. 1347. [167] B. Scrosati, Electrochimica. Acta, 45 (2000) p. 2461 [168] T. Osaka, Electrochem. Soc. Interface, 8 (1999) p. 3 [169] U. V. Alpen, A. Rabenau, and G. H. Talat, “Ionic conductivity in Li3N single crystals”, Appl. Phys. Lett., 30 (1977) p. 621. [170] B. A. Boukamp and R. A. Huggins, “Fast ionic conductivity in lithium nitride”, Mater. Res. Bull., 13 (1978) p. 23. [171] X. Yu, J.B. Bates, G. E. Jellison, Jr., and F. X. Hart, “A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorous Oxynitride”, J. Electrochem. Soc., 144 (1997) p. 524 [172] N.J. Dudney, B.J. Neudecker, Current Opinion in Solid State and Materials Science 4 (1999) p. 479. [173] J. B. Bates, N. J. Dudney, B. J. Neudecker, B. Wang: Thin-Film Lithium Batteries. in New Trends in Electrochemical Technology: Energy Storage Systems in Electronics. Singapore: Gordon and Breach; (2000) p. 453. [174] J. B. Bates, N. J. Dudney, B. J. Neudecker, A. Ueda, Evans CD: Thin-film lithium and lithium-ion batteries. Solid State Ionics 135 (2000) p. 33. [175] A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., New York, (2001) p. 163 [176] F. G. Cottrell, Z. Physik, Chem., 42 (1902) p. 385 [177] L. Qiu, R. Xie, P. Ding, and B. Qu, Compos. Struct., 62 (2003) p. 391. [178] J. Lv, L. Qiu, and B. Qu, Nanotechnology, 15 (2004) p. 1576. [179] J. K. Han, H. Y. Song, F. Saito, and B. T. Lee, Mater. Chem. Phys., 99 (2006) p. 235. [180] X. Lv, H. Bala, M. Li, X. Ma, S. Ma, Y. Gao, L. Tang, Y. Guo, X. Zhao, and Z. Wang, Colloids Surf., A, 296 (2007) p. 97. [181] E. F. Oliveira and Y. Hase, Vib. Spectrosc., 25 (2001) p. 53. [182] E. Martell and R. M. Smith, Critical Stability Constants, Vols. 3-6, Plenum, New York (1976-1989). [183] M. Catti, G. Ferraris, S. Hull, and A. Pavese, Phys. Chem. Miner., 22 (1995) p. 200. [184] C. F. Li, W. H. Ho, S. K. Yen, J. Electrochem. Soc., 156 (2009) p. E29. [185] Z. Koren, H. Rosenson, E. M. Gutman, Ya, B. Unigovski, A. Eliezer, Journal of Light Metals, 2 (2002) p. 81. [186] Y. Wang, G.. Liu, Z. Fan, Scripta Materialia 54 (2006) p. 903. [187] W. Mu, Y. Han, Surface and Coatings Technology, 202 (2008) p. 4278. [188] J. Slunecko, M. Kosec, J. Holc, G. Drazic, J. Am. Ceram. Soc. 81 (1998) p. 1269. [189] M. Winter, J. O. Besenhard, Electrochim. Acta, 45 (1999) p.31 [190] R. A. Huggins, J. Power Sources, 81/82 (1999) p.13. [191] S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Electrochemistry Communication, 3 (2001) p. 6. [192] K. F. Chiu, H. C. Lin, K. M. Lin, T. Y. Lin, D. T. Shieh, J. Electrochem. Soc., 153 (2006) p. A1038. [193] K. F. Chiu, H. C. Lin, K. M. Lin, T. Y. Lin, D. T. Shieh, J. Electrochem. Soc., 153 (2006) p. A920. [194] J. J. Lee, S. H. Kim, S. H. Jee, Y. S. Yoon, W. I. Cho, S. J. Yoon, J. W. Choi, and S. C. Nam, J. Power Sources 178 (2008) p. 434
摘要: 本研究主要分為兩個主題,第一部分是藉由電化學沉積MgO來了解MgO沉積機構,將MgO鍍層應用在AZ91D鎂合金基材上的腐蝕鍍層,第二個部分則是以電解沉積方式製備薄膜鋰電池材料的研究。 第一部分: 電化學沉積Mg(OH)2鍍層已經成功的被覆在白金電極上。在不同的電壓範圍有兩個主要的反應:(1) O2 + 2H2O + 4e- → 4OH- (~0.5 to -0.77 V),(2) 2H2O + 2e- → H2 + 2OH- (-0.77 to -3 V)。有效的沉積電位在第二個電壓範圍,因為電解水的反應使得有較多的H+離子和OH-離子產生與溶液中的Mg2+離子形成Mg(OH)2沉積在陰極表面。經由儀器分析,結果顯示Mg(OH)2鍍層的結晶取向與施加的電壓有關。主要是由於在較負的電壓下,會有較多的OH-離子產生,造成鍍層會有(001)的從優取向。因此我們可以藉由不同的電位來控制Mg(OH)2鍍層的表面形貌。另外由熱重分析結果可知Mg(OH)2縮合成MgO的溫度在340℃。 經由Mg(NO3)2水溶液成功的在AZ91D鎂合金基材上沉積MgO鍍層。 經由電化學極化分析與浸置實驗,可知沉積電位-1.8 V,鍍膜時間3600s,400℃退火處理有較均勻致密的MgO鍍層,且在3.5wt %的NaCl溶液中腐蝕電流由43降低到0.79 μA/cm2,鈍化區域由-1.52到 -1.25 V(Ag/AgCl)。可改善鎂合金的抗蝕性。 第二部分以電解沉積方式製備薄膜鋰電池材料的研究: 經由SnCl2和LiNO3的混合水溶液,成功的在不鏽鋼基材上合成Sn/Li2O複合鍍層。經由陰極極化分析,陰極極化曲線可分為三個區域:(1) O2 + 4H+ + 4e- → 2H2O (~0.25 to -0.5 V), (2) 2H+ + 2e- → H2, Sn2+ + 2e- → Sn, and NO3- + H2O + 2e- → NO2- + 2OH- (-0.5 to -1.34V), (3) 2H2O + 2e- → H2 + 2OH- (-1.34 to -2V)。Sn/Li2O複合鍍層經由儀器分析,顯示複合鍍層為Sn/LiOH的結構,經由200℃退火處理可使LiOH縮合成Li2O,得到Sn/Li2O複合鍍層,當溫度升高到250℃,使Sn氧化成SnO或SnO2。經由TEM的分析,Sn的奈米顆粒分散在非晶的Li2O基地中。由充放電測試結果顯示,充放電範圍0.02~0.9 V的範圍相較於充放電範圍0.02~1.2和0.02~1.5 V有較佳的可逆循環性。
In this study, two topics related to electrolytic deposition of MgO and one topics related to thin film lithium ion batteries are investigated for improving the corrosion resistance Mg alloys and the storage of energy on thin film, respectively. I. Magnesium hydroxide (Mg(OH)2) coatings have been successfully prepared via electrochemical synthesis on Pt in aqueous Mg(NO3)2 solution. Two major reactions corresponding to various applied voltage regions were identified: (i) O2 + 2H2O + 4e- → 4OH- (~0.5 to -0.77 V), (ii) 2H2O + 2e- → H2 + 2OH- (-0.77 to -3 V). The efficient deposition was carried out at the second region, because H+ ions were depleted and many OH- ions were provided to form Mg(OH)2 on the cathodic surface. Through thermogravimetric differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), it was found that the crystal orientation and morphology of Mg(OH)2 on Pt was linked to the applied voltage. The more negative the applied voltage and the more the OH- concentration was, finally resulting in the more (001) preferred orientation and various surface appearances. Therefore, the controllable fabrication of highly dense and uniform Mg(OH)2 films could be carried out by tuning deposition potential. The uniform coating film deposited at -1.2 V was densely packed flat Mg(OH)2 particles, and condensed into MgO around 340℃. Compared with micro-arc oxidation (MAO) which only restricted on Mg alloy, this electrochemical synthesis can be applied on other metals. Also, the reported method with a low cost, is simple and environmentally benign. II. The electrolytic MgO coating on Mg alloy has been carried out in 0.1 M Mg(NO3)2 aqueous solution to improve its corrosion resistance. The as-deposited film was Mg(OH)2 which was formed by the electrolysis, Mg2+‧2H2O → Mg(OH)2 + H2, and finally condensed into MgO at 350 ℃. An optimum process conducted at -1.8 V(Ag/AgCl) for 3600s and annealed at 400 ℃ was suggested to derive a more uniform and densified MgO protective film, revealing corrosion current density from 43 down to 0.79 μA/cm2 and a passivation region from -1.52 to -1.25 V(Ag/AgCl) in 3.5 wt% NaCl aqueous solution, comparable with micro-arc oxidation. III. Sn/Li2O composite coatings on stainless steel substrate, as anodes of thin film lithium battery were carried out in SnCl2 and LiNO3 mixed solutions by using cathodic electrochemical synthesis and subsequently annealed at 200℃. Through cathodic polarization tests, three major regions were verified: (I) O2 + 4H+ + 4e- → 2H2O (~0.25 to -0.5 V), (II) 2H+ + 2e- → H2, Sn2+ + 2e- → Sn, and NO3- + H2O + 2e- → NO2- + 2OH- (-0.5 to -1.34V), (III) 2H2O + 2e- → H2 + 2OH- (-1.34 to -2V). The coated specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and charge/discharge tests. The nano-sized Sn particles embedded in Li2O matrix were obtained at the lower part of region II such as -1.2 V, while the micro-sized Sn with little Li2O at the upper part, such as -0.7 V. Charge/discharge cycle tests demonstrated that Sn/Li2O composite film showed better cycle performance than Sn or SnO2 film, due to the retarding effects of amorphous Li2O on the further aggregation of Sn particles. Besides, the one tested at cutoff voltage 0.9 V was better than 1.2 and 1.5 V since the incomplete dealloy at lower cutoff voltage may retard the coarsening of Sn particles. Its capacity was still found 587 mAh/g after 50 cycle, and its capacity retention ratio C50/C2 was about 81.6%, higher than 63.5% and 49.1% at 1.2 and 1.5 V, respectively.
URI: http://hdl.handle.net/11455/10572
其他識別: U0005-2706200922500400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706200922500400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.