Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10577
標題: 氧化亞銅與氧化亞銅/銀/氧化亞銅薄膜之光電性質
Optical and electrical properties of Cu2O and Cu2O/Ag/Cu2O thin films
作者: 郭姵妏
Kuo, Pei-Wen
關鍵字: Cu2O/Ag/Cu2O films
氧化亞銅/銀/氧化亞銅薄膜
RTA
transmittance
absorption
plasmon resonance
快速退火系統
穿透率
吸收率
電漿子共振
光誘導電流
出版社: 材料科學與工程學系所
引用: 1. M. Ristov, “Chemically deposited Cu2O thin film as an oxygen pressure sensor”, Thin Solid Films, Vol. 167, pp. 309-316, 1988. 2. S.P. Sharam, “Absorption of water on copper and cuprous oxide”, Journal of Vacuum Science and Technology B, Vol. 16, pp.1557-1559, 1979. 3. M. Hara, “Mechano-catalytic overall water splitting (II) nafion-deposited Cu2O”, Applied Catalysis A: General, Vol. 190, pp.35-42, 2000. 4. T, Takata, “Mechano-catalytic overall water splitting on some oxides (II)”, Applied Catalysis A: General, Vol. 200, pp.255-262, 2000. 5. H. Maruska, “Photocatalytic decomposition of water at semiconductor electrodes”, Solar Energy, Vol. 20, pp.443-458, 2000. 6. N. Ozer, “Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques”, Solar Energy Materials and Solar Cell, Vol. 30, pp. 13-26, 1993. 7. A. Sivasankar Reddy, “Influence of substrate bias voltage on the properties of magnetron sputtered Cu2O films”, Physica B, Vol. 370, pp. 29-34, 2005. 8. B.P. Rai, “Cu2O Solar cells:A review”, Solar cells, Vol. 25, pp. 265-272, 2003. 9. L.C. Olsen, “Experimental and theoretical studies of Cu2O solar cells”, Solar cells, Vol. 7, pp. 247-279, 1982. 10. E. Fortin, “Photovoltaic effects in Cu2O---Cu solar cells grown by anodic oxidation”, Solid-State Electronics, Vol. 25, pp. 281-283, 1982. 11. M. Bender, “Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers”, Thin Solid Films, Vol. 326, pp. 67-71, 1998. 12. T. Suehiro, “Electronic properties of thin cuprous oxide sheet prepared by infrared light irradiation”, Thin Solid Films, Vol. 383, pp. 318-320, 2001. 13. A.O. Musa, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties”, Solar Energy Materials and Solar Cells, Vol. 51, pp. 305-316, 1998. 14. V. Georgieva, “Electrodeposited cuprous oxide on indium tin oxide for solar applications”, Solar Energy Materials and Solar Cells, Vol. 73, pp. 67-73, 2002. 15. S.S. Jeong, “Electrodeposited ZnO/Cu2O hetrojunction solar cells”, Electrochemica Acta, Vol. 53, pp. 2226-2231, 2008. 16. A.S. Reddy, “Structural and optical studies on dc reactive magnetron sputtered Cu2O films”, Materials Letters, Vol. 60, pp. 1617-1621, 2006. 17. A.S. Reddy, “Influence of substrate bias voltage on the properties of magnetron sputted Cu2O films”, Physica B, Vol. 370, pp. 29-34, 2005. 18. K. Akimoto, “Thin Film deposited of Cu2O and application for solar cells”, Solar Energy, Vol. 80, pp. 715-722, 2006. 19. M. Sawada, “Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays ”, Japanese Journal of Applied Physics, Vol. 40, pp. 3332-3336, 2001. 20. D.R. Sahu, “Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation”, Applied Surface Science, Vol. 253, pp. 4886-4890, 2007. 21. D.R. Sahu, ”Effect of substrate temperature and annealing treatment on the electrical and optical properties of silver-based multilayer coating electrodes”, Thin Solid Films, Vol. 515, pp. 932-935, 2006. 22. M. Fahland, “Low resisitivity transparent electrodes for displays on polymer substrates”, Thin Solid Films, Vol. 392, pp. 334-337, 2001. 23. G. Leftheriotis, “Development of multilayer transparent conductive coatings”, Solid State Ionics, Vol. 136-137, pp. 655-661, 2000. 24. Y. S. Jung, “Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures”, Thin Solid Films, Vol. 440, pp. 278-284, 2003. 25. T. Tatsuma, “Photoelectromic cell with a Ag-TiO2 nanocomposite: Concepts of drawing and display modes”, Electrochemistry Communications, Vol. 9, pp. 574-576, 2007. 26. A.J. Haes, “A unified view of propagating and localized surface plasmon resonance biosensors ”, Analytical and Bioanalytical Chemistry, Vol. 379, pp. 920-930, 2004. 27. Y. Dirix, Advanced Matterials, Vol. 11, Weily-Interscience, New York, p. 223, 1999. 28. E. Moulin, “Thin-film silicon solar cells with integrated silver nanoparticles”, Vol. 516, pp. 6813-6817, 2008. 29. Barry P., “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”, Journal of Applied Physics, Vol. 96, pp. 7519-7526, 2004. 30. S. Pillai, “Surface plasmon enhanced silicon solar cells”, Journal of Applied Physics, Vol. 101, pp.093105-1-093105-8, 2007. 31. K.R. Catchpole, “Surface plasmon for enhanced silicon light-emitting diodes and solar cells”, Journal of Luminescence, Vol. 121, pp. 315-318, 2006. 32. T. Tristan, “Plasmonic enhancement of silicon solar cells”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, pp. 526-527. 33. E. Moulin, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles”, Journal of Non-crystalline Solids, Vol. 354, pp.2488-2491, 2008. 34. O. Milton, The Materials Science of Thin Films, Department of Materials Science and Engineering Stevens, Hoboken, New jersey, pp. 109-118. 35. H.L. Hartnagel, “Semiconducting Transparent Thin Films”, Insititute of Physics Publication, p.17, 1995. 36. Brain Chapman, Glow Discharge, John Wiley and Sons, New York, 1980. 37. 柯文賢,表面與薄膜處理技術,全華科技,第8-17~8-18頁,民國94年。 38. J. Venables, “Nucleation and Growth of Thin films”, Reports on Progress in Physics, Vol. 47, pp. 399-403 , 1984. 39. M. Izaki, “Photochemical construction of photovoltaic device composed of p-Copper(I) oxide and z-Zinc oxide”, Journal of the Electrochemical Society, Vol. 153, pp. C668-C672, 2006. 40. A.E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-A review” Solid-State Electronics, Vol. 29, pp. 7-17, 1986. 41. G.P. Pollack, “Photoelectric properties of cuprous oxide”, Journal of Applied Physics, Vol. 46, p.163, 1975. 42. M.R. Wright, Ph.D thesis, Department of Chemistry, Wayne State Univ., Detroit, MI 1962. 43. V.R. Palkar, “Size-induced structural transitions in the Cu-O and Ce-O systems”, Physical Review B, Vol.53, pp. 2167-2170, 1996. 44. R.W.G. Wyckoff, Crystal Structures, Vol.1, Weily-Interscience, New York, 1965. 45. A.F.Wright, “Theory of copper vacancy of cuprous oxide”, Journal of Applied Physics, vol. 92, pp. 5849-5851, 2002. 46. Tetsu Tatsuma, “Photoelectrochromic cell with a Ag-TiO2 nanocomposite Concepts of drawing and display modes”, Electrochemistry Communications, Vol. 9, pp. 574-576, 2007. 47. Mustafa H. Chowdhury, “Use of silver nanoparticles to enhance surface plasmon-coupled emission(SPCE)”, Chemical Physics Letters, Vol. 452, pp. 162-167, 2008. 48. Gang Xu, “Tunable optical properties of nano-Au on vanadium dioxide”, Optics Communications, Vol. 282, pp. 1668-1670, 2008. 49. Yang Tina, “Mechanisms and applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, Journal of the American Chemical Society, Vol. 127, pp. 7632-7637, 2005. 50. H. Raether, Surface Plasmon, Springer, New York, 1988. 51. A.V. Zayats, “Nano-optics of surface plasmon polaritons”, Physics Reports, Vol. 408, pp.131-314, 2005. 52. J M Pitarke, “Theory of surface plasmons and surface-plasmon polarition”, Vol. 70, pp. 1-87, 2007. 53. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. 54. 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊,第28卷,第2期,第486-496頁,民國95年。 55. 林俊佑, “表面電漿子與粒子電漿子強化之光電生物感測器”,國立中央大學機械工程學系,碩士論文,民國93年。 56. K.H., “Interpaticle coupling effect on plasmon resonances of nanogold particles”, Nano Letter, Vol. 3, pp. 1087-1090, 2003. 57. J.P. Kottmann, “Spectral response of plasmon resonant nanoparticles with non-regular shape”, Optics express, Vol. 6, pp.213-219, 2000. 58. S. Kawata, Near-Field Optics and Surface Plasmon Polaritions, Springer-Verlag, 2001. 59. 邱國斌、蔡定平,“金屬表面電漿簡介”,物理雙月刊,第28卷,第2期,第472-486頁,民國95年。 60. A.I. Maaroof, “Effective optical constants of nanostructured thin silver films and impact of an insulator coating”, Thin Solid Films, Vol. 485, pp. 198-206, 2005. 61. Gang Xu, “Tunable optical properties of nano-Au on vanadium dioxide”, Optical Communications, Vol. 282, pp.1668-1670, 2009. 62. V.F. Drobny, “Properties of reactively-sputtered copper oxide thin films”, Thin Solid Films, Vol. 61, pp.89-98, 1979. 63. D.N. Popov, “Deposition of copper oxide, titanium oxide and indium tin oxide films by reactive magnetron sputtering”, Vacuum, Vol. 42, pp.53-55, 1991. 64. K.B.Sundaram, “ Characterization and optimization of zinc oxide films by r.f. magnetron sputtering”, Thin Solid Films, Vol. 295, pp.87-91,1997. 65. X. Y. Gao, “Microstructure and optical properties of AgxO prepared by direct-current magnetron-sputtering method”, Chinese Physics Letters, Vol. 25, pp.1449-1452, 2008. 66. K. Awazu, “A Plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide”, Journal of the American Chemical Society, Vol. 130, pp.1676-1680, 2008. 67. G. Zhao, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles”, Thin Solid Films, Vol. 277, pp.147-154, 1996. 68. J.M. Herrmann, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”, Applied Catalysis B: Environmental, Vol. 13, pp. 219-228, 1997. 69. J. F. Moulder, "Handbook of x-rayphotoelectron spectroscopy : a reerence book of standard spectra foridentification and interpretation of XPS data", Eden Prairie, Minn.,Physical Electronics, 1995. 70. Zhao J P, “Annealing effect on the surface plasmon resonance absorption of a Ti-SiO2 nanoparticle composite”, Journal of Vacuum Science and Technology B, Vol. 24, pp. 1104-1108, 2006. 71. Y. Suzuki, “Post-annealing temperature dependence of infrared absorption enhancement of polymer on evaporated silver films”, Thin Solid Films, Vol.515, pp. 3073-3078, 2007. 72. M. Ohring, Materials Science of Thin Films, Academic Press, USA, 1991.
摘要: 以直流磁控濺鍍在玻璃基板上分別沉積氧化亞銅(Cu2O)及氧化亞銅/銀/氧化亞銅(Cu2O/Ag/Cu2O;CAC)多層薄膜。控制銀在CAC薄膜間的厚度,分別為3、5、10nm。沉積完成後的一些試片,利用快速退火系統(RTA)製備出CAC-DA及CAC-AD兩種製程之試片。並利用Ag/Cu2O(AC)薄膜來研究銀在氬氣氣氛下經過熱處理後的團聚效應。以X光繞射儀及場發射電子顯微鏡證明銀能形成奈米顆粒存在於薄膜界面中。利用紫外光-可見光-遠紅外光光譜儀、霍爾量測系統、I-V量測系統分析所有試片的電性、光學性質及光電性質。 從實驗結果顯示2維的銀薄膜經過退火處理後由於銀具有高的表面張力能轉換成許多獨立的奈米顆粒。CAC薄膜,在可見光範圍的穿透率及電阻率隨著銀薄膜的厚度增加而降低。CAC-DA隨著退火溫度的增高,吸收率及光誘導電流產生率降低,可能是銀顆粒隨著退火溫度升高而變大的趨勢所造成。CAC-DA及CAC-AD皆可以有效的提升Cu2O薄膜在紅光及紅外光範圍的吸收。然而,CAC-AD薄膜所增加的吸收無法有效的轉為光電流的產生,有可能是因為銀顆粒的尺寸過大形成了原子晶格振動吸收而產生聲子輸出。
Cu2O and two types of Cu2O-Ag-Cu2O (CAC) multilayered thin films were deposited on glass substrates using DC-magnetron sputtering. For CAC films, the mass thickness of Ag layer was controlled at 3, 5, 10nm. After deposition, some of these films were annealed using a rapid thermal annealing (RTA) system at 450oC~ 650 oC, in order to create embedded Ag particles. AC films were used to study the clustering effect of Ag in Ar atmosphere, as well as for forming the 2nd type of CAC(CAC-DA and CAC-AD) film by covering another Cu2O layer on the annealed AC structure. A XRD (X-ray Diffraction) and FE-SEM (Field-Emission Scanning Electron Mircoscopy) were applied to examine the Ag nano-particles on the interface of these films. A UV-VIS-NIR photometer, a Hall measurement system, and a I-V measurement system were used to characterize the optical and electrical properties of these films with and without RTA. The results show that 2-dimensional Ag layer can transform into many individual particles due to its high surface tension at annealing temperature, no matter when the annealing was carried out. For CAC films, without annealing, the optical transmission and the resistivity are decreased with the inserted Ag-layer. After annealing, both the transmission and resistivity are increased, possibly due to the clustering effect of Ag layer. Most importantly, it is found that the embedded Ag particles can increase the light absorption in the NIR-IR region, which can increase photo-induce current.
URI: http://hdl.handle.net/11455/10577
其他識別: U0005-2408201016093300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201016093300
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.