Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10584
標題: 鉑/鈷/氧化鎳奈米多層膜之結構與磁性質之研究
The structures and magnetic properties of nanoscale Pt/Co/NiO multilayers
作者: 鍾杉慧
Chung, Shan-Hui
關鍵字: Exchange bias
交換偏壓
Ion-beam bombard
Perpendicular anisotropy
離子束轟擊
垂直異向性
出版社: 材料科學與工程學系所
引用: [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [3] J. Nogues, D. Lederman, T. J. Moran, and Ivan K. Schuller, Phys. Rev. Lett., 76, 24 (1996). [4] D. V. Dimitrov, Shufeng Zhang, J. Q. Xiao and G. C. Hadjipanayis, C. Prados, Phys. Rev. B.,58,18(1998). [5] T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys., 78 , 1887(1995) . [6] J. Nogu’es, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [7] Miguel Kiwi, J. Magn. Magn. Mater., 234,584 (2001). [8] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports., 422,65 (2005). [9] S. Maat, K. Takano, S.S.P. Parkin, and Eric E. Fullerton, Phys. Rev. Lett., 87, 87202 (2001). [10] Z. Y. Liu and S. Adenwalla, Phys. Rev. Lett., 91, 037207 (2003). [11] Xiaosong Ji and Kannan M. Krishnan, J. Appl. Phys., 99,08C105 (2006) [12] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [13] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [14] NICOLA A. SPALDIN , “Magnetic Materials : Fundamentals and device applications” , CAMBRIDGE (2003). [15] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [16] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [17] L. Neel, Ann Phys., 2, 61 (1967). [18] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [19] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [20] A. P. Malozemoff, J. Appl. Phys., 63, 3874(1988) . [21] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [22] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [23] Stiles M. D, McMichael R. D, Phys. Rev. B., 59, 3722 (1999). [24] P. F. Carcia, J. Appl. Phys., 63, 5066 (1988). [25] S. M. Zhou, L. Sun, P. C. Searson, and C. L. Chien, Phys. Rev. B., 69, 024408 (2004). [26] M T Johnson, P J H Bloemenz, F J A den Broeder and J J de Vries, Rep. Prog.Phys. 59,1409 (1996). [27] L. Neel, J. Phys. Radium, 15, 255 (1954). [28] J. Thiele, C. Boeglin, K. Hricovini, Phys. Rev. B., 53, R11934 (1996). [29] D.-S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B., 48, 15 886(1993). [30] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B., 50, 9989 (1994). [31] K. Umeda, and Y. Fujiwara, J. Magn. Magn. Mat., 156, 75(1996). [32] B. D. Cullity, “Introduction to Magnetic Materials” , Addison-Wesley (1972). [33] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues.,Nature. 423, 850 (2003). [34] W. B. Zeper ,F. J. A. M. Greidanus, P. F. Carcia ,J. Appl. Phys., 65, 4971(1989). [35] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and D. Weller., Nature 410, 444 (2001). [36] M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater., 287, 449 (2005). [37] S. Khizrroev and D. Litvinov, J. Appl. Phys., 95, 4521 (2004). [38] D. Thompson et al., IEEE Trans. MAG-11, 1036 (1975). [39] P. Kappenberger, S. Martin, Y. Pellmont, H. J. Hug, J. B. Kortright, O. Hellwig, and E. E. Fullerton, Phys. Rev. Lett., 91, 267202 (2003). [40] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [41] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.,(2002). [42] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000). [43] Phase Diagrams of Ternary Iron Alloys, V. Raghavan, The Indian Institute of Mateals, part 5, 7 (1989). [44] P. P. Freitas, J. L. Leal, T. S. Plaskett, L. V. Melo, and J. C. Soares, J. Appl.Phys. 75, 6480 (1994). [45] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994). [46] C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn., 30, 3834 (1994). [47] J. Fujikata, K. Isihara, K. Hayashi, H. Yamamoto, and K. Yamada, IEEE Trans.Magn., 31, 3936 (1995). [48] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [49] J. S. Moodera et al., Phys. Rev. Lett. 74, 3273 (1995). [50] G. A. Prinz, Science 282, 1660 (1998). [51] L. Geppert, IEEE Spectrum, 49, March (2003). [52] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [53] P. F. Carcia, J. Appl. Phys., 63 5066 (1988). [54] G. H. O. Daalderop, P. J. Kelly and F. J. A. den Broeder, Phys. Rev. B 68 ,682 (1992). [55] Y. Suzuki, H. Y. Hwang, S-W Cheong, and R. B. van Cover , Appl. Phys.Lett. 71(1), 140 (1997). [56] J. Sort, F. Garcia, S. Auffret, B. Rodmacq, B. Dieny, V. Langlais, S. Surinach, J. S. Munoz, M. D. Baro, and J. Nogue’s, Appl. Phys. Lett. 87, 242504 (2005). [57] Xiaosong Ji and Kannan M. Krishnan, J. Appl.Phys. 99, 08C105 (2006). [58] Z. Y. Liu, F. Zhang, N. Li, B. Xu, J. L. He, D. L. Yu, and Y. J. Tian, Phys. Rev. B 77 ,012409 (2008). [59] Chyun-H. Su, Shen-Chuan Lo, Shan-Haw Chiou, K.-W. Lin, Wen Ouyang, and H. Ouyangd, Electrochemical and Solid-State Letters, 12 (2) K1-K4 (2009). [60] T. B. Massalski et al., “Binary Alloy Phase Diagrams“, ASM International(1990). [61] 中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜之結構及磁性 研究,曾譯民,民國94 年。 [62] 中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜顯微結構之分析及其交換偏壓性質,劉家政,民95年。 [63] S. F. Cheng, J.P. Teter, J. Appl. Phys., 79, 6234 (1996). [64] C. M. Park, K. L. Min, K. H. Shin, J. Appl. Phys., 79, 6268 (1996). [65] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology : principles, deposition, film modification , and synthesis”, Noyes Publication, (1989). [66] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,(2001)。 [67] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A,5(3), 2081 (1987). [68] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [69] 汪健民主編,“材料分析”,中國材料科學學會,1998。 [70] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, Prentice-Hall, Inc., (2001). [71] David B. Williams and C. Barry Carter, ”Transmission Electron Microscopy”, Plenum Press, (1996). [72] 林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月。 [73] David Jiles, ”Magnetism and Magnetic Materials” , Chapman & Hall, (1991). [74] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [75] N. Fujimaki, H. Tamura, T. Imamura, and S. Hasuo, IEEE transactionson electron device, 35, 2412 (1988). [76] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [77]馬振基,奈米材料科技原理及應用,全華科技圖書股份有限公司,民92年。 [78] Hari Singh Nalwa, Magnetic nanostructures, ASP. [79] Z. G. Li and P. F. Garcia, and Y. Cheng, J. Appl. Phys., 73, 2434 (1993). [80] K.Umeda, Y. Fujiwara, T. Matsumoto, and K. Nalagawa, A.Itoh, J. Magn. Magn. Mater., 156, 75 (1996). [81] Chyun-H. Su, Shen-Chuan Lo, J. van Lierop, K.-W. Lin, and H. Ouyang, J. Appl. Phys., 105, 07C316 (2009). [82] J. Sort, V. Baltz, F. Garcia, B. Rodmacq, and B. Dieny, Phys. Rev. B 71 ,054411 (2005). [83] Z. Y. Liu, Appl. Phys.Lett. 85, 4971 (2004). [84] T. M. Hong, Phys. Rev. B 58, 97(1998). [85] Xiaosong Ji, Honglyoul Ju, David E. McCready, and Kannan M. Krishnan, J. Appl. Phys., 98, 116101 (2005). [86] Z. Zhang and P. E. Wigen, S. S. P. Parkin, J. Appl. Phys., 69, 5649 (1991). [87] J. Sort, F. Garcia, B. Rodmacq, S. Auffret, B. Dieny, J. Magn. Magn. Mater., 272, 355 (2004). [88]材料分析技術,專題工業科學雜誌,181期,91年1月 [89]中興大學材料工程學系碩士論文,氧含量對鎳鐵/氧化鎳奈米雙層薄膜之結構 及磁性研究,郭仲儀,民國94 年。 [90] NIST X-ray Photoelectron Spectroscopy Database。(http://srdata.nist.gov/xps/Default.aspx)
摘要: 本研究利用雙離子束濺鍍系統製備[鉑/鈷]4/氧化鎳(20nm)多層膜,並改變(1)鈷,(2)鉑厚度及(3)利用離子束於鍍膜過程轟擊氧化鎳底層,研究微結構及交換偏壓性質。X光繞射及電子顯微鏡分析結果顯示[鉑/鈷]4/氧化鎳多層膜主要是由f.c.c.結構之鉑(a= 3.9 &Aring;)、h.c.p.結構之鈷 (a= 2.44 &Aring;, c= 4.04 &Aring;)或f.c.c.結構之鈷鉑合金相與岩鹽結構之氧化鎳 (a= 4.18&Aring;)所組成,多層膜之晶粒大小介於5~20 nm之間。 第一部分我們發現鈷的厚度([鈷鉑-鉑]複合相或超晶格 [鉑/鈷]結構)跟交換偏壓效應有強烈的相依性,當鈷厚度(tco)<1 nm時,結構產生鈷鉑合金相,是貢獻出垂直異向性能的主要來源,樣品的易磁化方向為垂直膜面;而鈷厚度(tco)>1 nm時,結構是由hcp相的鈷和fcc相的鉑所組成,樣品的易磁化方向為平行膜面,隨著鈷厚度的增加,其易磁化方向從垂直翻轉至平行膜面的方向。 第二部分利用不同離子束轟擊能量(End Hall voltage,VEH=70、80、100、150V)濺鍍反鐵磁層氧化鎳,以改變基底氧化鎳的優選方向結構,再覆蓋上[鉑(3 nm)/鈷(0.9 nm)]4多層膜,當VEH=70 V時,樣品的易磁化方向為垂直膜面;在X光繞射的分析發現到,顯示出鈷鉑合金相的薄膜,因為其混合熱為負值,很容易產生鈷鉑的合金,垂直的磁異向性能是由界面處化學混合的合金相所貢獻,而VEH >70V時,樣品的易磁化方向為平行膜面,隨著VEH的增加,其易磁化方向從垂直翻轉至平行膜面的方向。 第三部分不同鉑厚度多層膜,在室溫下,當外加場垂直膜面時,由於熱擾動的關係使得鈷鉑變的比較不穩定,因此沒辦法克服異向性能,所以在室溫下沒有觀察到垂直的磁異向性。但是在低溫(5K)下當外加場垂直於膜面方向時,易磁化方向為垂直於膜面,這是因為在低溫時,鈷鉑變的比較穩定的關係,較易貢獻出磁異向性。由於我們系統中的鉑厚度大於文獻提出的鉑可貢獻出垂直異向性的臨界厚度,所以在低溫量測的結果顯示垂直異向性隨著鉑厚度的增加而減少。
Exchange bias in [Pt/Co]/NiO multilayers were studied as a function of film different Co or Pt thickness [Pt/Co]4 layer repetition with a dual ion beam deposition technique and capped with 20 nm of NiO on a SiO2 substrate. And control the NiO‘s orientation by the ability to regulate the ion beam energy using the End-Hall voltage (VEH) of the ion gun. Different Co thickness affect strongly the interfacial spin orientation, and thus exchange bias behavior when in contact with AF NiO. We find that the exchange bias is influenced strongly by the top [Pt/Co] layer configuration (composite [CoPt-Pt] or superlattice [Pt/Co] structure) when in contact with the bottom NiO layer. Perpendicular magnetic anisotropy of Co/Pt multilayers appears as the thinnest & thick [Pt(3 nm)/Co(0.6,2 nm)]4/NiO multilayer exhibits out-of-plane exchange bias field, a perpendicular Hex ~ -88.3 and -101 Oe at 5K was measured. Out-of-plane exchange bias is due to the mixing unstable interlayer energy of Co/Pt. We also note that CoPt alloy with a perpendicular easy axis can observed in TEM and XRD analysis when the Co layers are the thinnest. Different ion-beam energy(VEH=70、80、100、150 V)was used to change the bottom layers’(NiO) structure in Co/Pt multilayers. Co/Pt multilayers change of easy axis (out-of-plane toward in-plane) due to NiO’s orientation ordering induced by various End-Hall voltages. The intermixing is much more likely to occur in Co-Pt multilayers as compared to the Co-Pd system, which was observed in XRD. The PMA in [Pt/Co]4/NiO systems prepared with VEH=70 V is driven mainly by the heat of mixing. Perpendicular exchange bias was enhanced in change Pt thickness [Pt/Co]4 /NiO multilayers. At 298 K, there is not out-of-plane Hex⊥ in the [Pt(X nm)/Co]4/NiO multilayers. This is actually due to superparamagnetism. At 5 K,the perpendicular exchange bias Hex^ no variation with increase Pt thicknesses.This behavior may be due to the Pt thickness in excess of the critical value.
URI: http://hdl.handle.net/11455/10584
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.